login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362277
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..floor(n/2)} (-k/2)^j * binomial(n-j,j)/(n-j)!.
9
1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, -1, -2, 1, 1, 1, -2, -5, -2, 1, 1, 1, -3, -8, 1, 6, 1, 1, 1, -4, -11, 10, 41, 16, 1, 1, 1, -5, -14, 25, 106, 31, -20, 1, 1, 1, -6, -17, 46, 201, -44, -461, -132, 1, 1, 1, -7, -20, 73, 326, -299, -1952, -895, 28, 1, 1, 1, -8, -23, 106, 481, -824, -5123, -1028, 6481, 1216, 1
OFFSET
0,14
LINKS
FORMULA
E.g.f. of column k: exp(x - k*x^2/2).
T(n,k) = T(n-1,k) - k*(n-1)*T(n-2,k) for n > 1.
T(n,k) = n! * Sum_{j=0..floor(n/2)} (-k/2)^j / (j! * (n-2*j)!).
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
1, 0, -1, -2, -3, -4, -5, ...
1, -2, -5, -8, -11, -14, -17, ...
1, -2, 1, 10, 25, 46, 73, ...
1, 6, 41, 106, 201, 326, 481, ...
1, 16, 31, -44, -299, -824, -1709, ...
PROG
(PARI) T(n, k) = n!*sum(j=0, n\2, (-k/2)^j/(j!*(n-2*j)!));
CROSSREFS
Columns k=0..6 give A000012, (-1)^n * A001464(n), A293604, A362278, A362176, A362279, A362177.
Main diagonal gives A362276.
T(n,2*n) gives A362282.
Sequence in context: A287641 A265312 A241531 * A367955 A273894 A308035
KEYWORD
sign,tabl
AUTHOR
Seiichi Manyama, Apr 13 2023
STATUS
approved