login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367958
a(n) = Product_{i=1..n, j=1..n} (i + 5*j).
4
1, 6, 5544, 2822916096, 1723467782592331776, 2210440498434925488635904000000, 9234659938893939743399592700454853672960000000, 180150216814109052335771891722360520401032374209013927116800000000
OFFSET
0,2
COMMENTS
In general, for d>0, Product_{i=1..n, j=1..n} (i + d*j) ~ A^(1/d) * (Product_{j=1..d} Gamma(j/d)^(j/d)) * (d+1)^((d/2 + 1 + 1/(2*d))*n*(n+1) + (d+1)^2/(12*d) + 1/12) * n^(n^2 - d/12 - 1/4 - 1/(12*d)) / ((2*Pi)^((d+1)/4) * exp(3*n^2/2 + 1/(12*d)) * d^((n*(d*n + (d+1)))/2 - 1/(12*d))), where A = A074962 is the Glaisher-Kinkelin constant.
Equivalently, for d>0, Product_{i=1..n, j=1..n} (i + d*j) ~ A^d * (Product_{j=1..d} BarnesG(j/d)) * (2*Pi)^((d-3)/4) * (d+1)^((d + (d+1)^2*(6*n*(n+1) + 1)) / (12*d)) * n^(n^2 - 1/4 - 1/(12*d) - d/12) / (d^((n+1)*(d*n + 1)/2) * exp(3*n^2/2 + d/12)).
FORMULA
a(n) ~ A^(1/5) * (1 + sqrt(5))^(1/10) * 2^(18*n*(n+1)/5 + 29/60) * 3^(18*n*(n+1)/5 + 41/60) * n^(n^2 - 41/60) / (Pi^(1/10) * Gamma(1/5)^(3/5) * Gamma(2/5)^(1/5) * 5^(n*(5*n+6)/2 + 1/3) * exp(3*n^2/2 + 1/60)), where A = A074962 is the Glaisher-Kinkelin constant.
MAPLE
a:= n-> mul(mul(i+5*j, i=1..n), j=1..n):
seq(a(n), n=0..8); # Alois P. Heinz, Dec 06 2023
MATHEMATICA
Table[Product[i + 5*j, {i, 1, n}, {j, 1, n}], {n, 0, 10}]
CROSSREFS
Cf. A079478 (d=1), A324402 (d=2), A367956 (d=3), A367957 (d=4).
Sequence in context: A115431 A116117 A116135 * A011788 A320446 A172649
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Dec 06 2023
STATUS
approved