login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367944
a(n) = Product_{i=1..n, j=1..n} (i^2 + 5*j^2).
4
1, 6, 27216, 1344924798336, 3605580335899213007486976, 1648055031941075082958467426002632704000000, 312704667066499295437237787452750428210311485710262201221120000000
OFFSET
0,2
COMMENTS
In general, for d>0, Product_{i=1..n, j=1..n} (i^2 + d*j^2) ~ c(d) * n^(2*n^2 - 1/2) * (d+1)^(n*(n+1)) * d^(-n/2) * exp(n*(n+1)*(Pi*d/2 - (d-1)*arctan(sqrt(d))) / sqrt(d) - 3*n^2), where c(d) is a constant (dependent only on d).
c(1) = exp(Pi/12) * Gamma(1/4) / (2*Pi)^(5/4), cf. A324403.
FORMULA
a(n) ~ c * n^(2*n^2 - 1/2) * 6^(n*(n+1)) * 5^(-n/2) * exp(n*(n+1)*(5*Pi/2 - 4*arctan(sqrt(5)))/sqrt(5) - 3*n^2), where c = 0.4431081869167792949266065295798218232844989957987096447783995373751372668...
MATHEMATICA
Table[Product[i^2+5*j^2, {i, 1, n}, {j, 1, n}], {n, 0, 8}]
CROSSREFS
Cf. A324403 (d=1), A367941 (d=2), A367942 (d=3), A367943 (d=4).
Sequence in context: A143780 A225716 A159429 * A283888 A134728 A127488
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Dec 05 2023
STATUS
approved