|
|
A324403
|
|
a(n) = Product_{i=1..n, j=1..n} (i^2 + j^2).
|
|
16
|
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Next term is too long to be included.
|
|
LINKS
|
Table of n, a(n) for n=1..6.
|
|
FORMULA
|
a(n) ~ 2^(n*(n+1) - 3/4) * exp(Pi*n*(n+1)/2 - 3*n^2 + Pi/12) * n^(2*n^2 - 1/2) / (Pi^(1/4) * Gamma(3/4)).
a(n) = 2*n^2*a(n-1)*Product_{i=1..n-1} (n^2 + i^2)^2. - Chai Wah Wu, Feb 26 2019
|
|
MATHEMATICA
|
Table[Product[i^2+j^2, {i, 1, n}, {j, 1, n}], {n, 1, 10}]
|
|
PROG
|
(PARI) a(n) = prod(i=1, n, prod(j=1, n, i^2+j^2)); \\ Michel Marcus, Feb 27 2019
|
|
CROSSREFS
|
Cf. A079478, A293290, A324402, A324443, A324426, A324437, A324438, A324439, A324440.
Sequence in context: A249177 A249178 A281650 * A214597 A283661 A067827
Adjacent sequences: A324400 A324401 A324402 * A324404 A324405 A324406
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Vaclav Kotesovec, Feb 26 2019
|
|
STATUS
|
approved
|
|
|
|