login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324439
a(n) = Product_{i=1..n, j=1..n} (i^6 + j^6).
8
1, 2, 1081600, 528465082730906880000, 29276520893554373473343522853366005760000000000, 5719545329208791496596894540018824083491259163047733746620041978183680000000000000000
OFFSET
0,2
FORMULA
a(n) ~ c * 2^(n*(n+1)) * (2 + sqrt(3))^(sqrt(3)*n*(n+1)) * exp(Pi*n*(n+1) - 9*n^2) * n^(6*n^2 - 3/2), where c = 0.104143806044091748191387307161835081649...
a(n) = A324403(n) * A367668(n). - Vaclav Kotesovec, Dec 01 2023
For n>0, a(n)/a(n-1) = A367823^2 / (2*n^18). - Vaclav Kotesovec, Dec 02 2023
MAPLE
a:= n-> mul(mul(i^6 + j^6, i=1..n), j=1..n):
seq(a(n), n=0..5); # Alois P. Heinz, Nov 26 2023
MATHEMATICA
Table[Product[i^6 + j^6, {i, 1, n}, {j, 1, n}], {n, 1, 6}]
PROG
(Python)
from math import prod, factorial
def A324439(n): return (prod(i**6+j**6 for i in range(1, n) for j in range(i+1, n+1))*factorial(n)**3)**2<<n # Chai Wah Wu, Nov 26 2023
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Feb 28 2019
EXTENSIONS
a(n)=1 prepended by Alois P. Heinz, Nov 26 2023
STATUS
approved