OFFSET
0,2
FORMULA
a(n) ~ c * 2^(n*(n+1)) * (2 + sqrt(3))^(sqrt(3)*n*(n+1)) * exp(Pi*n*(n+1) - 9*n^2) * n^(6*n^2 - 3/2), where c = 0.104143806044091748191387307161835081649...
For n>0, a(n)/a(n-1) = A367823^2 / (2*n^18). - Vaclav Kotesovec, Dec 02 2023
MAPLE
a:= n-> mul(mul(i^6 + j^6, i=1..n), j=1..n):
seq(a(n), n=0..5); # Alois P. Heinz, Nov 26 2023
MATHEMATICA
Table[Product[i^6 + j^6, {i, 1, n}, {j, 1, n}], {n, 1, 6}]
PROG
(Python)
from math import prod, factorial
def A324439(n): return (prod(i**6+j**6 for i in range(1, n) for j in range(i+1, n+1))*factorial(n)**3)**2<<n # Chai Wah Wu, Nov 26 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Feb 28 2019
EXTENSIONS
a(n)=1 prepended by Alois P. Heinz, Nov 26 2023
STATUS
approved