login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Product_{i=1..n, j=1..n} (i^6 + j^6).
8

%I #16 Dec 08 2023 04:54:12

%S 1,2,1081600,528465082730906880000,

%T 29276520893554373473343522853366005760000000000,

%U 5719545329208791496596894540018824083491259163047733746620041978183680000000000000000

%N a(n) = Product_{i=1..n, j=1..n} (i^6 + j^6).

%F a(n) ~ c * 2^(n*(n+1)) * (2 + sqrt(3))^(sqrt(3)*n*(n+1)) * exp(Pi*n*(n+1) - 9*n^2) * n^(6*n^2 - 3/2), where c = 0.104143806044091748191387307161835081649...

%F a(n) = A324403(n) * A367668(n). - _Vaclav Kotesovec_, Dec 01 2023

%F For n>0, a(n)/a(n-1) = A367823^2 / (2*n^18). - _Vaclav Kotesovec_, Dec 02 2023

%p a:= n-> mul(mul(i^6 + j^6, i=1..n), j=1..n):

%p seq(a(n), n=0..5); # _Alois P. Heinz_, Nov 26 2023

%t Table[Product[i^6 + j^6, {i, 1, n}, {j, 1, n}], {n, 1, 6}]

%o (Python)

%o from math import prod, factorial

%o def A324439(n): return (prod(i**6+j**6 for i in range(1,n) for j in range(i+1,n+1))*factorial(n)**3)**2<<n # _Chai Wah Wu_, Nov 26 2023

%Y Cf. A079478, A324403, A324426, A324437, A324438, A324440, A367834.

%Y Cf. A367668, A367823.

%K nonn

%O 0,2

%A _Vaclav Kotesovec_, Feb 28 2019

%E a(n)=1 prepended by _Alois P. Heinz_, Nov 26 2023