login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324441
a(n) = Product_{k1=1..n, k2=1..n, k3=1..n, k4=1..n} (k1 + k2 + k3 + k4).
2
1, 4, 2240421120000, 2357018782335863659143506877669927151046989269393693317529600000000000000
OFFSET
0,2
COMMENTS
Next term is too long to be included.
Limit_{n->oo} ((Product_{k1=1..n, k2=1..n, k3=1..n, k4=1..n, k5=1..n} (k1 + k2 + k3 + k4 + k5))^(1/n^5))/n = 2^(-88) * 3^(81/4) * 5^(625/24) * exp(-137/60).
Limit_{n->oo} ((Product_{k1=1..n, k2=1..n, k3=1..n, k4=1..n, k5=1..n, k6=1..n} (k1 + k2 + k3 + k4 + k5 + k6))^(1/n^6))/n = 2^(1184/5) * 3^(891/20) * 5^(-3125/24) * exp(-49/20).
Limit_{n->oo} ((Product_{k1=1..n, k2=1..n, k3=1..n, k4=1..n, k5=1..n, k6=1..n, k7=1..n} (k1 + k2 + k3 + k4 + k5 + k6 + k7))^(1/n^7))/n = 2^(-5552/9) * 3^(-29889/80) * 5^(15625/48) * 7^(117649/720) * exp(-363/140).
From Vaclav Kotesovec, Dec 23 2023: (Start)
Limit_{n->oo} ((Product_{k1=1..n, k2=1..n, k3=1..n, k4=1..n, k5=1..n, k6=1..n, k7=1..n, k8=1..n} (k1 + k2 + k3 + k4 + k5 + k6 + k7 + k8))^(1/n^8))/n = 2^(277456/105) * 3^(92583/80) * 5^(-78125/144) * 7^(-823543/720) * exp(-761/280).
Limit_{n->oo} ((Product_{k1=1..n, k2=1..n, k3=1..n, k4=1..n, k5=1..n, k6=1..n, k7=1..n, k8=1..n, k9=1..n} (k1 + k2 + k3 + k4 + k5 + k6 + k7 + k8 + k9))^(1/n^9))/n = 2^(-37504/3) * 3^(-432297/2240) * 5^(390625/576) * 7^(5764801/1440) * exp(-7129/2520). (End)
In general, for m >= 1, limit_{n->oo} ((Product_{k1=1..n, k2=1..n, ... , km=1..n} (k1 + k2 + ... + km))^(1/n^m))/n = exp(-HarmonicNumber(m)) * Product_{j=1..m} j^((-1)^(m-j) * j^m / (j! * (m-j)!)). - Vaclav Kotesovec, Dec 26 2023
FORMULA
Limit_{n->oo} (a(n)^(1/n^4))/n = 2^(76/3) * 3^(-27/2) * exp(-25/12) = exp(Integral_{k1=0..1, k2=0..1, k3=0..1, k4=0..1} log(k1 + k2 + k3 + k4) dk4 dk3 dk2 dk1) = 1.9062335728830251698721203...
MAPLE
a:= n-> mul(mul(mul(mul(i+j+k+m, i=1..n), j=1..n), k=1..n), m=1..n):
seq(a(n), n=0..4); # Alois P. Heinz, Jun 24 2023
MATHEMATICA
Table[Product[k1 + k2 + k3 + k4, {k1, 1, n}, {k2, 1, n}, {k3, 1, n}, {k4, 1, n}], {n, 1, 5}]
CROSSREFS
Sequence in context: A161405 A147876 A164796 * A004231 A266200 A066546
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Feb 28 2019
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Jun 24 2023
STATUS
approved