|
|
A004231
|
|
Ackermann's sequence: n^^n := n^n^n^...^n (with n n's).
|
|
7
|
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Using Knuth's arrow notation, this is n^^^2 (n-penta-2) or n^^n (n-tetra-n). - Andrew Robbins, Apr 16 2009
Comment from Trevor Green: The fourth term in this sequence has about as many digits - 8.07 * 10^153 - as the *square* of the number of protons in the universe.
We could prepend a(0) = 1 (since 0^^0 = 1, that is, the "empty power tower" gives the "empty product"). - Daniel Forgues, May 17 2013
The last 60 decimal digits of a(4) are ...67586985427238232605843019607448189676936860456095261392896. - Daniel Forgues, Jun 25 2016
a(4) has (the following number having 154 decimal digits)
80723047260282253793826303970853990300713679217387 \
43031867082828418414481568309149198911814701229483 \
451981557574771156496457238535299087481244990261351117 decimal digits.
a(4) = 4^4^4^4 = 4^
13407807929942597099574024998205846127479365820592 \
39337772356144372176403007354697680187429816690342 \
7690031858186486050853753882811946569946433649006084096,
the exponent of 4 having 155 decimal digits. (End)
The fractional part of 4^4^4*log[10](4) starts .373100157363599870..., so the first few digits of a(4) are 23610226714597313.... - Robert Israel, Jul 06 2016
|
|
LINKS
|
|
|
MAPLE
|
b:= (n, i)-> `if`(i=0, 1, n^b(n, i-1)):
a:= n-> b(n, n):
|
|
MATHEMATICA
|
a[n_] := If[n == 0, 1, Nest[n^#&, n, n-1]];
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Daniel Wild (wild(AT)edumath.u-strasbg.fr)
|
|
STATUS
|
approved
|
|
|
|