The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A324441 a(n) = Product_{k1=1..n, k2=1..n, k3=1..n, k4=1..n} (k1 + k2 + k3 + k4). 1

%I

%S 4,2240421120000,

%T 2357018782335863659143506877669927151046989269393693317529600000000000000

%N a(n) = Product_{k1=1..n, k2=1..n, k3=1..n, k4=1..n} (k1 + k2 + k3 + k4).

%C Next term is too long to be included.

%C Limit_{n->infinity} ((Product_{k1=1..n, k2=1..n, k3=1..n, k4=1..n, k5=1..n} (k1 + k2 + k3 + k4 + k5))^(1/n^5))/n = 2^(-88) * 3^(81/4) * 5^(625/24) * exp(-137/60).

%C Limit_{n->infinity} ((Product_{k1=1..n, k2=1..n, k3=1..n, k4=1..n, k5=1..n, k6=1..n} (k1 + k2 + k3 + k4 + k5 + k6))^(1/n^6))/n = 2^(1184/5) * 3^(891/20) * 5^(-3125/24) * exp(-49/20).

%C Limit_{n->infinity} ((Product_{k1=1..n, k2=1..n, k3=1..n, k4=1..n, k5=1..n, k6=1..n, k7=1..n} (k1 + k2 + k3 + k4 + k5 + k6 + k7))^(1/n^7))/n = 2^(-5552/9) * 3^(-29889/80) * 5^(15625/48) * 7^(117649/720) * exp(-363/140).

%F Limit_{n->infinity} (a(n)^(1/n^4))/n = 2^(76/3) * 3^(-27/2) * exp(-25/12) = 1.9062335728830251698721203...

%t Table[Product[k1 + k2 + k3 + k4, {k1, 1, n}, {k2, 1, n}, {k3, 1, n}, {k4, 1, n}], {n, 1, 5}]

%Y Cf. A079478, A306594.

%K nonn

%O 1,1

%A _Vaclav Kotesovec_, Feb 28 2019

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 25 16:01 EST 2022. Contains 350572 sequences. (Running on oeis4.)