login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324442
a(n) = Product_{i=1..n, j=1..n} (i^2 + j).
0
1, 2, 180, 6652800, 402265543680000, 109211487076824381849600000, 295382703175843424854047228769075200000000, 15385012566245626089929288743828190926813939944652800000000000
OFFSET
0,2
FORMULA
From Vaclav Kotesovec, Dec 27 2023: (Start)
a(n) ~ c * n^(2*n^2 + n/2 - 1/4) / exp(2*n^2 - 2*Pi*n^(3/2)/3 - Pi*sqrt(n)/2), where c = 0.31906...
For n>1, a(n) = a(n-1) * Gamma(n - i*sqrt(n)) * Gamma(n + i*sqrt(n)) * Gamma(n^2 + n + 1) * sinh(Pi*sqrt(n)) / (Pi * n^(5/2) * Gamma(n^2)), where i is the imaginary unit. (End)
MAPLE
a:= n-> mul(mul(i^2+j, i=1..n), j=1..n):
seq(a(n), n=0..8); # Alois P. Heinz, Jun 24 2023
MATHEMATICA
Table[Product[i^2 + j, {i, 1, n}, {j, 1, n}], {n, 1, 10}]
Table[Product[Pochhammer[1 + i^2, n], {i, 1, n}], {n, 1, 10}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Feb 28 2019
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Jun 24 2023
STATUS
approved