Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Dec 28 2023 03:01:14
%S 1,2,180,6652800,402265543680000,109211487076824381849600000,
%T 295382703175843424854047228769075200000000,
%U 15385012566245626089929288743828190926813939944652800000000000
%N a(n) = Product_{i=1..n, j=1..n} (i^2 + j).
%F From _Vaclav Kotesovec_, Dec 27 2023: (Start)
%F a(n) ~ c * n^(2*n^2 + n/2 - 1/4) / exp(2*n^2 - 2*Pi*n^(3/2)/3 - Pi*sqrt(n)/2), where c = 0.31906...
%F For n>1, a(n) = a(n-1) * Gamma(n - i*sqrt(n)) * Gamma(n + i*sqrt(n)) * Gamma(n^2 + n + 1) * sinh(Pi*sqrt(n)) / (Pi * n^(5/2) * Gamma(n^2)), where i is the imaginary unit. (End)
%p a:= n-> mul(mul(i^2+j, i=1..n), j=1..n):
%p seq(a(n), n=0..8); # _Alois P. Heinz_, Jun 24 2023
%t Table[Product[i^2 + j, {i, 1, n}, {j, 1, n}], {n, 1, 10}]
%t Table[Product[Pochhammer[1 + i^2, n], {i, 1, n}], {n, 1, 10}]
%Y Cf. A079478, A101686, A255322, A324403.
%K nonn
%O 0,2
%A _Vaclav Kotesovec_, Feb 28 2019
%E a(0)=1 prepended by _Alois P. Heinz_, Jun 24 2023