login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A079478
Coefficient of x^0 in P(n,x) = (Product_{i=0..n-1} i!^2)/matdet(M(n)) of degree n^2 where M(n) is the n X n matrix m(i,j) = 1/(i+j+x).
36
1, 2, 72, 172800, 60963840000, 5574884681318400000, 205619158526859285626880000000, 4394314874750658447092552646524928000000000, 73955304765761130113502867875624106401967636480000000000000
OFFSET
0,2
COMMENTS
Product of all matrix elements of n X n matrix M(i,j) = i+j (i,j=1..n). - Alexander Adamchuk, Apr 12 2006
LINKS
FORMULA
a(n) = (n+1)*(Product_{i=0..n} (n+i)!)/Product_{i=1..n+1} i!.
a(n) = A000178(2n)/A000178(n)^2, i.e., "central supercombinations" by analogy with A000984. - Henry Bottomley, May 14 2005
a(n) = Product_{j=1..n} Product_{i=1..n} (i + j). - Alexander Adamchuk, Apr 12 2006
Asymptotic: a(n) ~ (2*n+1)^(2*n^2 + 2*n + 5/12)*(n+1)^(-n^2 - 2*n - 5/6) * exp(-zeta'(-1) - (3/2)*n^2 + 3/4)/(sqrt(2*Pi)). - Peter Luschny, Nov 26 2012
a(n) = BarnesG(2*n+2) / BarnesG(n+2)^2. - Vaclav Kotesovec, Feb 28 2019
a(n) ~ A * 2^(2*n*(n+1) - 1/12) * n^(n^2 - 5/12) / (sqrt(Pi) * exp(3*n^2/2 + 1/12)), where A = A074962 is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Dec 04 2023
EXAMPLE
Determinant of M(2) is 1/(x^4 + 12*x^3 + 53*x^2 + 102*x + 72) hence a(2)=72.
MAPLE
seq(mul(mul(k+j, j=1..n), k=1..n), n=0..8); # Zerinvary Lajos, Jun 01 2007
MATHEMATICA
Table[Product[Product[(i+j), {i, 1, n}], {j, 1, n}], {n, 0, 10}] (* Alexander Adamchuk, Apr 12 2006 *)
Table[BarnesG[2*n+2] / BarnesG[n+2]^2, {n, 0, 10}] (* Vaclav Kotesovec, Feb 28 2019 *)
PROG
(PARI) a(n)=(n+1)*prod(i=0, n, (n+i)!)/prod(i=1, n+1, i!)
(PARI) a(n) = prod(i=1, n, prod(j=1, n, i+j)); \\ Michel Marcus, Feb 27 2019
(Python)
from math import prod, factorial
def A079478(n): return prod(i+j for i in range(1, n) for j in range(i+1, n+1))**2*factorial(n)<<n # Chai Wah Wu, Nov 26 2023
CROSSREFS
Cf. A011379.
Central column in triangle A009963.
Sequence in context: A308941 A244148 A320443 * A367492 A221709 A036899
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Jan 15 2003
STATUS
approved