The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A367492 a(n) = Product_{k=0..n} (k+1)!^k. 1
 1, 2, 72, 995328, 206391214080000, 39934999921327865856000000000, 654541076770994951831125144608178176000000000000000, 113391518341540395635327816456127297986876881699306137641287680000000000000000000000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS G. C. Greubel, Table of n, a(n) for n = 0..15 FORMULA a(n) ~ A^(3/2) * n^(n^3/3 + 5*n^2/4 + 11*n/12 - 3/8) * (2*Pi)^(n^2/4 + n/4 - 1/2) / exp(4*n^3/9 + 7*n^2/8 - n + zeta(3)/(8*Pi^2) - 25/24), where A is the Glaisher-Kinkelin constant A074962. a(n) = (n+1)^n * abs(A203421(n)) * A255269(n). MATHEMATICA Table[Product[(k+1)!^k, {k, 0, n}], {n, 0, 10}] PROG (Magma) [(&*[Factorial(k+1)^k: k in [0..n]]): n in [0..15]]; // G. C. Greubel, Feb 18 2024 (SageMath) [product(factorial(k+1)^k for k in range(n+1)) for n in range(16)] # G. C. Greubel, Feb 18 2024 CROSSREFS Cf. A203421, A255269. Sequence in context: A244148 A320443 A079478 * A221709 A036899 A324566 Adjacent sequences: A367489 A367490 A367491 * A367493 A367494 A367495 KEYWORD nonn AUTHOR Vaclav Kotesovec, Nov 20 2023 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 16 08:27 EDT 2024. Contains 371698 sequences. (Running on oeis4.)