

A244148


The number of ways one can assign values to n arrays a_{1},...,a_{n} of increasing size (size of a_{1} is 1, size of a_{2} is 2, ..., size of a_{n} is n) using the numbers 1, ..., n*(n+1)/2, distinctly, such that the positions of array a_{i} can only be assigned values in the interval ((n+1)i),... , (n*(n+1)/2(ni)).


1



1, 2, 72, 115200, 13276569600, 165253252792320000, 312379127174190543667200000, 120053472861445542607502662277529600000, 12098873398276702490569569159619238449643520000000000, 400639807706466477973460949403651522366500906696560470917120000000000
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

This sequence provides an upper bound for the following sequence: the number of ways one can assign values to n arrays a_{1},...,a_{n} of increasing size (size of a_{1} is 1, size of a_{2} is 2, ..., size of a_{n} is n) using the numbers 1, ..., n*(n+1)/2, distinctly, such that for the j^th position of array a_{i} (a_{i}(j)) one of the follow holds, a_{i+1}(j+1) < a_{i}(j) < a_{i+1}(j) or a_{i+1}(j) < a_{i}(j) < a_{i+1}(j+1). Currently, there is no formula known for enumerating this sequence.


LINKS

Clark Kimberling, Unsolved Problems and Rewards: Number 18


FORMULA

a(n) = Prod_{k=1..n} (k!* binomial((n^2  3*n + 5*k  k^2)/2 , k)).


PROG

(PARI) a(n)=prod(k=1, n, k!* binomial((n^2  3*n + 5*k  k^2)/2 , k)); \\ Joerg Arndt, Jun 22 2014


CROSSREFS



KEYWORD

easy,nonn


AUTHOR



STATUS

approved



