The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A009963 Triangle of numbers n!(n-1)!...(n-k+1)!/(1!2!...k!). 17
 1, 1, 1, 1, 2, 1, 1, 6, 6, 1, 1, 24, 72, 24, 1, 1, 120, 1440, 1440, 120, 1, 1, 720, 43200, 172800, 43200, 720, 1, 1, 5040, 1814400, 36288000, 36288000, 1814400, 5040, 1, 1, 40320, 101606400, 12192768000, 60963840000, 12192768000, 101606400, 40320, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Product of all matrix elements of n X k matrix M(i,j) = i+j (i=1..n-k, j=1..k). - Peter Luschny, Nov 26 2012 These are the generalized binomial coefficients associated to the sequence A000178. - Tom Edgar, Feb 13 2014 LINKS G. C. Greubel, Rows n = 0..50 of the triangle, flattened FORMULA T(n,k) = T(n-1,k-1)*A008279(n,n-k) = A000178(n)/(A000178(k)*A000178(n-k)) i.e., a "supercombination" of "superfactorials". - Henry Bottomley, May 22 2002 Equals ConvOffsStoT transform of the factorials starting (1, 2, 6, 24, ...); e.g., ConvOffs transform of (1, 2, 6, 24) = (1, 24, 72, 24, 1). Note that A090441 = ConvOffsStoT transform of the factorials, A000142. - Gary W. Adamson, Apr 21 2008 Asymptotic: T(n,k) ~ exp((3/2)*k^2 - zeta'(-1) + 3/4 - (3/2)*n*k)*(1+n)^((1/2)*n^2 + n + 5/12)*(1+k)^(-(1/2)*k^2 - k - 5/12)*(1 + n - k)^(-(1/2)*n^2 + n*k - (1/2)*k^2 - n + k - 5/12)/(sqrt(2*Pi). - Peter Luschny, Nov 26 2012 T(n,k) = (n-k)!*C(n-1,k-1)*T(n-1,k-1) + k!*C(n-1,k)*T(n-1,k) where C(i,j) is given by A007318. - Tom Edgar, Feb 13 2014 T(n,k) = Product_{i=1..k} (n+1-i)!/i!. - Alois P. Heinz, Jun 07 2017 T(n,k) = BarnesG(n+2)/(BarnesG(k+2)*BarnesG(n-k+2)). - G. C. Greubel, Jan 04 2022 EXAMPLE Rows start: 1; 1, 1; 1, 2, 1; 1, 6, 6, 1; 1, 24, 72, 24, 1; 1, 120, 1440, 1440, 120, 1; etc. MATHEMATICA (* First program *) row[n_]:= Table[Product[i+j, {i, 1, n-k}, {j, 1, k}], {k, 0, n}]; Array[row, 9, 0] // Flatten (* Jean-François Alcover, Jun 01 2019, after Peter Luschny *) (* Second program *) T[n_, k_]:= BarnesG[n+2]/(BarnesG[k+2]*BarnesG[n-k+2]); Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jan 04 2022 *) PROG (Sage) def A009963_row(n): return [mul(mul(i+j for j in (1..k)) for i in (1..n-k)) for k in (0..n)] for n in (0..7): A009963_row(n) # Peter Luschny, Nov 26 2012 (Sage) def triangle_to_n_rows(n): #changing n will give you the triangle to row n. N=[[1]+n*[0]] for i in [1..n]: N.append([]) for j in [0..n]: if i>=j: N[i].append(factorial(i-j)*binomial(i-1, j-1)*N[i-1][j-1]+factorial(j)*binomial(i-1, j)*N[i-1][j]) else: N[i].append(0) return [[N[i][j] for j in [0..i]] for i in [0..n]] # Tom Edgar, Feb 13 2014 (Magma) A009963:= func< n, k | (1/Factorial(n+1))*(&*[ Factorial(n-j+1)/Factorial(j): j in [0..k]]) >; [A009963(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 04 2022 CROSSREFS Cf. A000178, A007318, A060854, A090441. Central column is A079478. Columns include A010796, A010797, A010798, A010799, A010800. Row sums give A193520. Sequence in context: A174411 A322620 A155795 * A008300 A321789 A173887 Adjacent sequences: A009960 A009961 A009962 * A009964 A009965 A009966 KEYWORD nonn,tabl AUTHOR N. J. A. Sloane STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 16 13:54 EDT 2024. Contains 373429 sequences. (Running on oeis4.)