The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A009963 Triangle of numbers n!(n-1)!...(n-k+1)!/(1!2!...k!). 17
1, 1, 1, 1, 2, 1, 1, 6, 6, 1, 1, 24, 72, 24, 1, 1, 120, 1440, 1440, 120, 1, 1, 720, 43200, 172800, 43200, 720, 1, 1, 5040, 1814400, 36288000, 36288000, 1814400, 5040, 1, 1, 40320, 101606400, 12192768000, 60963840000, 12192768000, 101606400, 40320, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
Product of all matrix elements of n X k matrix M(i,j) = i+j (i=1..n-k, j=1..k). - Peter Luschny, Nov 26 2012
These are the generalized binomial coefficients associated to the sequence A000178. - Tom Edgar, Feb 13 2014
LINKS
FORMULA
T(n,k) = T(n-1,k-1)*A008279(n,n-k) = A000178(n)/(A000178(k)*A000178(n-k)) i.e., a "supercombination" of "superfactorials". - Henry Bottomley, May 22 2002
Equals ConvOffsStoT transform of the factorials starting (1, 2, 6, 24, ...); e.g., ConvOffs transform of (1, 2, 6, 24) = (1, 24, 72, 24, 1). Note that A090441 = ConvOffsStoT transform of the factorials, A000142. - Gary W. Adamson, Apr 21 2008
Asymptotic: T(n,k) ~ exp((3/2)*k^2 - zeta'(-1) + 3/4 - (3/2)*n*k)*(1+n)^((1/2)*n^2 + n + 5/12)*(1+k)^(-(1/2)*k^2 - k - 5/12)*(1 + n - k)^(-(1/2)*n^2 + n*k - (1/2)*k^2 - n + k - 5/12)/(sqrt(2*Pi). - Peter Luschny, Nov 26 2012
T(n,k) = (n-k)!*C(n-1,k-1)*T(n-1,k-1) + k!*C(n-1,k)*T(n-1,k) where C(i,j) is given by A007318. - Tom Edgar, Feb 13 2014
T(n,k) = Product_{i=1..k} (n+1-i)!/i!. - Alois P. Heinz, Jun 07 2017
T(n,k) = BarnesG(n+2)/(BarnesG(k+2)*BarnesG(n-k+2)). - G. C. Greubel, Jan 04 2022
EXAMPLE
Rows start:
1;
1, 1;
1, 2, 1;
1, 6, 6, 1;
1, 24, 72, 24, 1;
1, 120, 1440, 1440, 120, 1; etc.
MATHEMATICA
(* First program *)
row[n_]:= Table[Product[i+j, {i, 1, n-k}, {j, 1, k}], {k, 0, n}];
Array[row, 9, 0] // Flatten (* Jean-François Alcover, Jun 01 2019, after Peter Luschny *)
(* Second program *)
T[n_, k_]:= BarnesG[n+2]/(BarnesG[k+2]*BarnesG[n-k+2]);
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jan 04 2022 *)
PROG
(Sage)
def A009963_row(n):
return [mul(mul(i+j for j in (1..k)) for i in (1..n-k)) for k in (0..n)]
for n in (0..7): A009963_row(n) # Peter Luschny, Nov 26 2012
(Sage)
def triangle_to_n_rows(n): #changing n will give you the triangle to row n.
N=[[1]+n*[0]]
for i in [1..n]:
N.append([])
for j in [0..n]:
if i>=j:
N[i].append(factorial(i-j)*binomial(i-1, j-1)*N[i-1][j-1]+factorial(j)*binomial(i-1, j)*N[i-1][j])
else:
N[i].append(0)
return [[N[i][j] for j in [0..i]] for i in [0..n]]
# Tom Edgar, Feb 13 2014
(Magma)
A009963:= func< n, k | (1/Factorial(n+1))*(&*[ Factorial(n-j+1)/Factorial(j): j in [0..k]]) >;
[A009963(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 04 2022
CROSSREFS
Central column is A079478.
Columns include A010796, A010797, A010798, A010799, A010800.
Row sums give A193520.
Sequence in context: A174411 A322620 A155795 * A008300 A321789 A173887
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 16 13:54 EDT 2024. Contains 373429 sequences. (Running on oeis4.)