|
|
|
|
1, 21, 441, 9261, 194481, 4084101, 85766121, 1801088541, 37822859361, 794280046581, 16679880978201, 350277500542221, 7355827511386641, 154472377739119461, 3243919932521508681, 68122318582951682301, 1430568690241985328321, 30041942495081691894741, 630880792396715529789561, 13248496640331026125580781, 278218429446951548637196401
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Same as Pisot sequences E(1, 21), L(1, 21), P(1, 21), T(1, 21). Essentially same as Pisot sequences E(21, 441), L(21, 441), P(21, 441), T(21, 441). See A008776 for definitions of Pisot sequences.
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=1, a(n) equals the number of 21-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
|
|
LINKS
|
|
|
FORMULA
|
For A009966..A009992 we have g.f.: 1/(1-qx), e.g.f.: exp(qx), with q = 21, 22, ..., 48. - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 07 2001
G.f.: 22/G(0) where G(k) = 1 - 2*x*(k+1)/(1 - 1/(1 - 2*x*(k+1)/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 10 2013
|
|
MATHEMATICA
|
21^Range[0, 20] (* or *) NestList[21#&, 1, 20] (* Harvey P. Dale, Aug 31 2023 *)
|
|
PROG
|
(Sage) [lucas_number1(n, 21, 0) for n in range(1, 17)] # Zerinvary Lajos, Apr 29 2009
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|