login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A009965 Powers of 21. 32
1, 21, 441, 9261, 194481, 4084101, 85766121, 1801088541, 37822859361, 794280046581, 16679880978201, 350277500542221, 7355827511386641, 154472377739119461, 3243919932521508681, 68122318582951682301, 1430568690241985328321, 30041942495081691894741, 630880792396715529789561, 13248496640331026125580781, 278218429446951548637196401 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Same as Pisot sequences E(1, 21), L(1, 21), P(1, 21), T(1, 21). Essentially same as Pisot sequences E(21, 441), L(21, 441), P(21, 441), T(21, 441). See A008776 for definitions of Pisot sequences.
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=1, a(n) equals the number of 21-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
LINKS
Tanya Khovanova, Recursive Sequences
FORMULA
For A009966..A009992 we have g.f.: 1/(1-qx), e.g.f.: exp(qx), with q = 21, 22, ..., 48. - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 07 2001
a(n) = 21^n; a(n) = 21*a(n-1), n > 0, a(0)=1. - Vincenzo Librandi, Nov 21 2010
G.f.: 22/G(0) where G(k) = 1 - 2*x*(k+1)/(1 - 1/(1 - 2*x*(k+1)/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 10 2013
MATHEMATICA
21^Range[0, 20] (* or *) NestList[21#&, 1, 20] (* Harvey P. Dale, Aug 31 2023 *)
PROG
(Sage) [lucas_number1(n, 21, 0) for n in range(1, 17)] # Zerinvary Lajos, Apr 29 2009
(Magma) [21^n: n in [0..100]] // Vincenzo Librandi, Nov 21 2010
(PARI) a(n)=21^n \\ Charles R Greathouse IV, Nov 18 2011
(Maxima) A009965(n):=21^n$
makelist(A009965(n), n, 0, 30); /* Martin Ettl, Nov 07 2012 */
CROSSREFS
Row 10 of A329332.
Sequence in context: A224009 A167255 A171295 * A285873 A189433 A041842
KEYWORD
nonn,easy
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 10 21:37 EDT 2024. Contains 375795 sequences. (Running on oeis4.)