Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #60 Apr 13 2022 01:14:45
%S 1,1,1,1,2,1,1,6,6,1,1,24,72,24,1,1,120,1440,1440,120,1,1,720,43200,
%T 172800,43200,720,1,1,5040,1814400,36288000,36288000,1814400,5040,1,1,
%U 40320,101606400,12192768000,60963840000,12192768000,101606400,40320,1
%N Triangle of numbers n!(n-1)!...(n-k+1)!/(1!2!...k!).
%C Product of all matrix elements of n X k matrix M(i,j) = i+j (i=1..n-k, j=1..k). - _Peter Luschny_, Nov 26 2012
%C These are the generalized binomial coefficients associated to the sequence A000178. - _Tom Edgar_, Feb 13 2014
%H G. C. Greubel, <a href="/A009963/b009963.txt">Rows n = 0..50 of the triangle, flattened</a>
%F T(n,k) = T(n-1,k-1)*A008279(n,n-k) = A000178(n)/(A000178(k)*A000178(n-k)) i.e., a "supercombination" of "superfactorials". - _Henry Bottomley_, May 22 2002
%F Equals ConvOffsStoT transform of the factorials starting (1, 2, 6, 24, ...); e.g., ConvOffs transform of (1, 2, 6, 24) = (1, 24, 72, 24, 1). Note that A090441 = ConvOffsStoT transform of the factorials, A000142. - _Gary W. Adamson_, Apr 21 2008
%F Asymptotic: T(n,k) ~ exp((3/2)*k^2 - zeta'(-1) + 3/4 - (3/2)*n*k)*(1+n)^((1/2)*n^2 + n + 5/12)*(1+k)^(-(1/2)*k^2 - k - 5/12)*(1 + n - k)^(-(1/2)*n^2 + n*k - (1/2)*k^2 - n + k - 5/12)/(sqrt(2*Pi). - _Peter Luschny_, Nov 26 2012
%F T(n,k) = (n-k)!*C(n-1,k-1)*T(n-1,k-1) + k!*C(n-1,k)*T(n-1,k) where C(i,j) is given by A007318. - _Tom Edgar_, Feb 13 2014
%F T(n,k) = Product_{i=1..k} (n+1-i)!/i!. - _Alois P. Heinz_, Jun 07 2017
%F T(n,k) = BarnesG(n+2)/(BarnesG(k+2)*BarnesG(n-k+2)). - _G. C. Greubel_, Jan 04 2022
%e Rows start:
%e 1;
%e 1, 1;
%e 1, 2, 1;
%e 1, 6, 6, 1;
%e 1, 24, 72, 24, 1;
%e 1, 120, 1440, 1440, 120, 1; etc.
%t (* First program *)
%t row[n_]:= Table[Product[i+j, {i,1,n-k}, {j,1,k}], {k,0,n}];
%t Array[row, 9, 0] // Flatten (* _Jean-François Alcover_, Jun 01 2019, after _Peter Luschny_ *)
%t (* Second program *)
%t T[n_, k_]:= BarnesG[n+2]/(BarnesG[k+2]*BarnesG[n-k+2]);
%t Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Jan 04 2022 *)
%o (Sage)
%o def A009963_row(n):
%o return [mul(mul(i+j for j in (1..k)) for i in (1..n-k)) for k in (0..n)]
%o for n in (0..7): A009963_row(n) # _Peter Luschny_, Nov 26 2012
%o (Sage)
%o def triangle_to_n_rows(n): #changing n will give you the triangle to row n.
%o N=[[1]+n*[0]]
%o for i in [1..n]:
%o N.append([])
%o for j in [0..n]:
%o if i>=j:
%o N[i].append(factorial(i-j)*binomial(i-1,j-1)*N[i-1][j-1]+factorial(j)*binomial(i-1,j)*N[i-1][j])
%o else:
%o N[i].append(0)
%o return [[N[i][j] for j in [0..i]] for i in [0..n]]
%o # _Tom Edgar_, Feb 13 2014
%o (Magma)
%o A009963:= func< n,k | (1/Factorial(n+1))*(&*[ Factorial(n-j+1)/Factorial(j): j in [0..k]]) >;
%o [A009963(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Jan 04 2022
%Y Cf. A000178, A007318, A060854, A090441.
%Y Central column is A079478.
%Y Columns include A010796, A010797, A010798, A010799, A010800.
%Y Row sums give A193520.
%K nonn,tabl
%O 0,5
%A _N. J. A. Sloane_