login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A090441
Symmetric triangle of certain normalized products of decreasing factorials.
6
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 6, 12, 6, 1, 1, 24, 144, 144, 24, 1, 1, 120, 2880, 8640, 2880, 120, 1, 1, 720, 86400, 1036800, 1036800, 86400, 720, 1, 1, 5040, 3628800, 217728000, 870912000, 217728000, 3628800, 5040, 1, 1, 40320, 203212800, 73156608000
OFFSET
-1,8
COMMENTS
Similar to, but different from, superfactorial Pascal triangle A009963.
A009963(n,m) = (Product_{p=0..m-1} (n-p)!)/superfac(m) with n >= m >= 0, otherwise 0.
FORMULA
a(n, m) = 0 if n < m-1;
a(n, m) = 1 if m = 0 or n = -1;
a(n, m) = (Product_{p=0..m-1} (n-p)!)/superfac(m-1) if n >= 0, 1 <= m <= n+1, where superfac(n) := A000178(n), n >= 0, (superfactorials).
Equals ConvOffsStoT transform of the factorials, A000142: (1, 1, 2, 6, 24, ...); e.g., ConvOffs transform of (1, 1, 2, 6) = (1, 6, 12, 6, 1). - Gary W. Adamson, Apr 21 2008
EXAMPLE
Rows for n = -1, 0, 1, 2, 3, ...:
1;
1, 1;
1, 1, 1;
1, 2, 2, 1;
1, 6, 12, 6, 1;
...
CROSSREFS
Column sequences give: A000012 (powers of 1), A000142 (factorials), A010790, A090443-4, etc.
Cf. A090445 (row sums), A090446 (alternating row sums).
Sequence in context: A138169 A139331 A173886 * A340591 A155794 A107876
KEYWORD
nonn,easy,tabl
AUTHOR
Wolfdieter Lang, Dec 23 2003
STATUS
approved