The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A010790 a(n) = n!*(n+1)!. 39
 1, 2, 12, 144, 2880, 86400, 3628800, 203212800, 14631321600, 1316818944000, 144850083840000, 19120211066880000, 2982752926433280000, 542861032610856960000, 114000816848279961600000, 27360196043587190784000000, 7441973323855715893248000000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Let M_n be the symmetrical n X n matrix M_n(i,j)=1/min(i,j); then for n>=0 det(M_n)=(-1)^(n-1)/a(n-1). - Benoit Cloitre, Apr 27 2002 If n women and n men are to be seated around a circular table, with no two of the same sex seated next to each other, the number of possible arrangements is a(n-1). - Ross La Haye, Jan 06 2009 a(n-1) is also the number of (directed) Hamiltonian cycles in the complete bipartite graph K_{n,n}. - Eric W. Weisstein, Jul 15 2011 a(n) is also number of ways to place k nonattacking semi-bishops on an n X n board, sum over all k>=0 (for definition see A187235). - Vaclav Kotesovec, Dec 06 2011 a(n) is number of permutations of {1,2,3,...,2n} such that no odd numbers are adjacent. - Ran Pan, May 23 2015 a(n) is number of permutations of {1,2,3,...,2n+1} such that no odd numbers are adjacent. - Ran Pan, May 23 2015 REFERENCES J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, pp. 63-65. Kenneth H. Rosen, Editor-in-Chief, Handbook of Discrete and Combinatorial Mathematics, CRC Press, 2000, page 91. [Ross La Haye, Jan 06 2009] LINKS T. D. Noe, Table of n, a(n) for n = 0..100 J. Agapito, On symmetric polynomials with only real zeros and nonnegative gamma-vectors, Linear Algebra and its Applications, Volume 451, 15 June 2014, Pages 260-289. Steve Gadbois, 104.12 From calendar coincidence to factorials to Ramanujan, The Mathematical Gazette (2020) Vol. 104, Issue 560, 304-306. V. Kotesovec, Non-attacking chess pieces, 6ed, 2013, p. 268. S. Tanimoto, Parity alternating permutations and signed Eulerian numbers, Ann. Comb. 14 (2010) 355 (total number of PAPs of [2n+1].) Eric Weisstein's World of Mathematics, Complete Bipartite Graph Eric Weisstein's World of Mathematics, Hamiltonian Cycle Shawn L. Witte, Link Nomenclature, Random Grid Diagrams, and Markov Chain Methods in Knot Theory, Ph. D. Dissertation, University of California-Davis (2020). FORMULA Integral representation as n-th moment of a positive function on a positive half axis, in Maple notation: a(n)=int(x^n*2*sqrt(x)*BesselK(1, 2*sqrt(x)), x=0..infinity), n=0, 1... Hypergeometric g.f.: a(0)=1, a(n)=subs(x=0, n!*diff(1/((x-1)^2), x\$n)), n=1, 2... - Karol A. Penson, Oct 23 2001 Sum_{i >=0} 1/a(i) = A096789. - Gerald McGarvey, Jun 10 2004 With b(n)=A002378(n) for n>0 and b(0)=1, a(n) = b(n)*b(n-1)...*b(0). - Tom Copeland, Sep 21 2011 a(n) = det(PS(i+1,j), 1 <= i,j <= n), where PS(n,k) are Legendre-Stirling numbers of the second kind. - Mircea Merca, Apr 04 2013 a(n) = (2*n)! / A000108(n) which implies that the e.g.f. of A126120 is Sum_{k>=0} x^(2*k) / a(k). - Michael Somos, Nov 15 2014 0 = a(n)*(+18*a(n+2) - 15*a(n+3) + a(n+4)) + a(n+1)*(-9*a(n+2) - 4*a(n+3)) + a(n+2)*(+3*a(n+2)) for all n>=0. - Michael Somos, Nov 15 2014 From Ilya Gutkovskiy, Jan 20 2017: (Start) a(n) ~ 2*Pi*n^(2*n+2)/exp(2*n). Sum_{n>=0} (-1)^n/a(n) = BesselJ(1,2) = 0.576724807756873387202448... (End) D-finite with recurrence: a(n) -n*(n+1)*a(n-1)=0. - R. J. Mathar, Jan 27 2020 EXAMPLE G.f. = 1 + 2*x + 12*x^2 + 144*x^3 + 2880*x^4 + 86400*x^5 + ... MAPLE f:= n-> n!*(n+1)!: seq(f(n), n=0..30); MATHEMATICA s=1; lst={s}; Do[s+=(s*=n)*n; AppendTo[lst, s], {n, 1, 4!, 1}]; lst (* Vladimir Joseph Stephan Orlovsky, Nov 15 2008 *) Times@@@Partition[Range[0, 25]!, 2, 1] (* Harvey P. Dale, Jun 17 2011 *) PROG (Sage) [stirling_number1(n, 1)*factorial (n-2) for n in range(2, 17)] # Zerinvary Lajos, Jul 07 2009 (PARI) a(n)= n!^2*(n+1) \\ Charles R Greathouse IV, Jul 31 2011 (MAGMA) [Factorial(n)*Factorial(n+1): n in [0..20]]; // Vincenzo Librandi, Aug 08 2014 CROSSREFS Cf. A004737, A000290. Second column of triangle A129065. Cf. A000108, A126120. Sequence in context: A262241 A052742 A035049 * A321631 A221101 A187748 Adjacent sequences:  A010787 A010788 A010789 * A010791 A010792 A010793 KEYWORD nonn,nice,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 15 00:00 EDT 2021. Contains 345041 sequences. (Running on oeis4.)