login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A035049
E.g.f. satisfies A(x) = x*(1+A(A(x))), A(0)=0.
3
1, 2, 12, 144, 2760, 74880, 2676240, 120234240, 6571393920, 426547296000, 32283270835200, 2808028566604800, 277433852555059200, 30836115140589158400, 3824551325912308992000, 525674251444773150720000, 79591811594194480508928000, 13205626859810397006618624000
OFFSET
1,2
LINKS
FORMULA
a(n) = n!*T(n,1), T(n,m) = m/n*sum(k=1..n-m, sum(i=k..n-m, T(n-m,i) * C(i-1,k-1)*(-1)^i)*(-1)^k*C(n+k-1,n-1)), n>m, T(n,n)=1. - Vladimir Kruchinin, May 06 2012
MAPLE
A:= proc(n) option remember; `if`(n=0, 0, (T-> unapply(
convert(series(x*(1+T(T(x))), x, n+1), polynom), x))(A(n-1)))
end:
a:= n-> coeff(A(n)(x), x, n)*n!:
seq(a(n), n=1..20); # Alois P. Heinz, Aug 23 2008
# second Maple program:
b:= proc(n, k) option remember; `if`(n=0, 1, add(k*
a(j)*b(n-j, k-1)*binomial(n-1, j-1), j=1..n))
end:
a:= n-> `if`(n=0, 1, b(n-1, n)):
seq(a(n), n=1..20); # Alois P. Heinz, Aug 21 2019
MATHEMATICA
T[n_, m_] := T[n, m] = If[n == m, 1, m/n*Sum[Sum[T[n-m, i]*Binomial[i-1, k-1]*(-1)^i, {i, k, n-m}]*(-1)^k*Binomial[n+k-1, n-1], {k, 1, n-m}]]; Table[n!*T[n, 1], {n, 1, 16}] (* Jean-François Alcover, Feb 12 2014, after Vladimir Kruchinin *)
PROG
(Maxima) T(n, m):=if n=m then 1 else m/n*sum(sum(T(n-m, i)*binomial(i-1, k-1)*(-1)^i, i, k, n-m)*(-1)^k*binomial(n+k-1, n-1), k, 1, n-m); makelist(n!*T(n, 1), n, 1, 10); /* Vladimir Kruchinin, May 06 2012 */
CROSSREFS
Sequence in context: A227462 A262241 A052742 * A010790 A321631 A221101
KEYWORD
nonn,eigen
AUTHOR
Christian G. Bower, Oct 15 1998
EXTENSIONS
More terms from Alois P. Heinz, Aug 23 2008
STATUS
approved