login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A035048
Numerators of alternating sum transform (PSumSIGN) of Harmonic numbers H(n) = A001008/A002805.
3
1, 1, 4, 3, 23, 11, 176, 25, 563, 137, 6508, 49, 88069, 363, 91072, 761, 1593269, 7129, 31037876, 7381, 31730711, 83711, 744355888, 86021, 3788707301, 1145993, 11552032628, 1171733, 340028535787, 1195757
OFFSET
1,3
COMMENTS
p^2 divides a(2p-2) for prime p>3. a(2p-2)/p^2 = A061002(n) = A001008(p-1)/p^2 for prime p>2. - Alexander Adamchuk, Jul 07 2006
LINKS
N. J. A. Sloane, Transforms
FORMULA
G.f. for A035048(n)/A035047(n) : log(1-x)/(x^2-1). - Benoit Cloitre, Jun 15 2003
a(n) = Numerator[Sum[(-1)^(k+1)*Sum[(-1)^(i+1)*1/i,{i,1,k}],{k,1,n}]]. - Alexander Adamchuk, Jul 07 2006
a(n) = numerator((-1)^(n+1)*1/2*(log(2)+(-1)^(n+1)*(gamma+1/2*(psi(1+n/2)-psi(3/2+n/2))+psi(2+n)))), with gamma the Euler-Mascheroni constant. - - Gerry Martens, Apr 28 2011
MAPLE
S:= series(log(1-x)/(x^2-1), x, 101):
seq(numer(coeff(S, x, j)), j=1..100); # Robert Israel, Jun 02 2015
MATHEMATICA
Numerator[Table[Sum[(-1)^(k+1)*Sum[(-1)^(i+1)*1/i, {i, 1, k}], {k, 1, n}], {n, 1, 50}]] (* Alexander Adamchuk, Jul 07 2006 *)
PROG
(PARI) a(n)=numerator(polcoeff(log(1-x)/(x^2-1)+O(x^(n+1)), n))
CROSSREFS
KEYWORD
nonn,easy,frac
AUTHOR
STATUS
approved