login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A035048
Numerators of alternating sum transform (PSumSIGN) of Harmonic numbers H(n) = A001008/A002805.
3
1, 1, 4, 3, 23, 11, 176, 25, 563, 137, 6508, 49, 88069, 363, 91072, 761, 1593269, 7129, 31037876, 7381, 31730711, 83711, 744355888, 86021, 3788707301, 1145993, 11552032628, 1171733, 340028535787, 1195757
OFFSET
1,3
COMMENTS
p^2 divides a(2p-2) for prime p>3. a(2p-2)/p^2 = A061002(n) = A001008(p-1)/p^2 for prime p>2. - Alexander Adamchuk, Jul 07 2006
LINKS
N. J. A. Sloane, Transforms
FORMULA
G.f. for A035048(n)/A035047(n) : log(1-x)/(x^2-1). - Benoit Cloitre, Jun 15 2003
a(n) = Numerator[Sum[(-1)^(k+1)*Sum[(-1)^(i+1)*1/i,{i,1,k}],{k,1,n}]]. - Alexander Adamchuk, Jul 07 2006
a(n) = numerator((-1)^(n+1)*1/2*(log(2)+(-1)^(n+1)*(gamma+1/2*(psi(1+n/2)-psi(3/2+n/2))+psi(2+n)))), with gamma the Euler-Mascheroni constant. - - Gerry Martens, Apr 28 2011
MAPLE
S:= series(log(1-x)/(x^2-1), x, 101):
seq(numer(coeff(S, x, j)), j=1..100); # Robert Israel, Jun 02 2015
MATHEMATICA
Numerator[Table[Sum[(-1)^(k+1)*Sum[(-1)^(i+1)*1/i, {i, 1, k}], {k, 1, n}], {n, 1, 50}]] (* Alexander Adamchuk, Jul 07 2006 *)
PROG
(PARI) a(n)=numerator(polcoeff(log(1-x)/(x^2-1)+O(x^(n+1)), n))
CROSSREFS
KEYWORD
nonn,easy,frac
AUTHOR
STATUS
approved