Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Jun 02 2015 15:48:53
%S 1,1,4,3,23,11,176,25,563,137,6508,49,88069,363,91072,761,1593269,
%T 7129,31037876,7381,31730711,83711,744355888,86021,3788707301,1145993,
%U 11552032628,1171733,340028535787,1195757
%N Numerators of alternating sum transform (PSumSIGN) of Harmonic numbers H(n) = A001008/A002805.
%C p^2 divides a(2p-2) for prime p>3. a(2p-2)/p^2 = A061002(n) = A001008(p-1)/p^2 for prime p>2. - _Alexander Adamchuk_, Jul 07 2006
%H Robert Israel, <a href="/A035048/b035048.txt">Table of n, a(n) for n = 1..2000</a>
%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%F G.f. for A035048(n)/A035047(n) : log(1-x)/(x^2-1). - _Benoit Cloitre_, Jun 15 2003
%F a(n) = Numerator[Sum[(-1)^(k+1)*Sum[(-1)^(i+1)*1/i,{i,1,k}],{k,1,n}]]. - _Alexander Adamchuk_, Jul 07 2006
%F a(n) = numerator((-1)^(n+1)*1/2*(log(2)+(-1)^(n+1)*(gamma+1/2*(psi(1+n/2)-psi(3/2+n/2))+psi(2+n)))), with gamma the Euler-Mascheroni constant. - - _Gerry Martens_, Apr 28 2011
%p S:= series(log(1-x)/(x^2-1), x, 101):
%p seq(numer(coeff(S,x,j)), j=1..100); # _Robert Israel_, Jun 02 2015
%t Numerator[Table[Sum[(-1)^(k+1)*Sum[(-1)^(i+1)*1/i,{i,1,k}],{k,1,n}],{n,1,50}]] (* _Alexander Adamchuk_, Jul 07 2006 *)
%o (PARI) a(n)=numerator(polcoeff(log(1-x)/(x^2-1)+O(x^(n+1)),n))
%Y Cf. A035047, A002428, A001008, A058313, A061002.
%K nonn,easy,frac
%O 1,3
%A _N. J. A. Sloane_.