OFFSET
0,4
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..220
David Callan, A Combinatorial Interpretation of the Eigensequence for Composition, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.4.
David Callan, Lagrange Inversion Counts 3bar-5241-Avoiding Permutations, J. Int. Seq. 14 (2011) # 11.9.4.
N. J. A. Sloane, Transforms
FORMULA
G.f. A(x) satisfies the functional equation: A(x)-x = x*A(A(x)). - Paul D. Hanna, Aug 04 2002
G.f.: A(x/(1+A(x))) = x. - Paul D. Hanna, Dec 04 2003
Suppose the functions A=A(x), B=B(x), C=C(x), etc., satisfy: A = 1 + xAB, B = 1 + xABC, C = 1 + xABCD, D = 1 + xABCDE, etc., then B(x)=A(x*A(x)), C(x)=B(x*A(x)), D(x)=C(x*A(x)), etc., where A(x) = 1 + x*A(x)*A(x*A(x)) and x*A(x) is the g.f. of this sequence (see table A128325). - Paul D. Hanna, Mar 10 2007
G.f. A(x) = x*F(x,1) where F(x,n) satisfies: F(x,n) = F(x,n-1)*(1 + x*F(x,n+1)) for n>0 with F(x,0)=1. - Paul D. Hanna, Apr 16 2007
a(n) = [x^(n-1)] [1 + A(x)]^n/n for n>=1 with a(0)=0; i.e., a(n) equals the coefficient of x^(n-1) in [1+A(x)]^n/n for n >= 1. - Paul D. Hanna, Nov 18 2008
From Paul D. Hanna, Jul 09 2009: (Start)
Let A(x)^m = Sum_{n>=0} a(n,m)*x^n with a(0,m)=1, then
a(n,m) = Sum_{k=0..n} m*C(n+m,k)/(n+m) * a(n-k,k).
(End)
G.f. satisfies:
* A(x) = x*exp( Sum_{m>=0} {d^m/dx^m A(x)^(m+1)/x} * x^(m+1)/(m+1)! );
* A(x) = x*exp( Sum_{m>=1} [Sum_{k>=0} C(m+k-1,k)*{[y^k] A(y)^m/y^m}*x^k]*x^m/m );
which are equivalent. - Paul D. Hanna, Dec 15 2010
The g.f. satisfies:
log(A(x)/x) = A(x) + {d/dx A(x)^2/x}*x^2/2! + {d^2/dx^2 A(x)^3/x}*x^3/3! + {d^3/dx^3 A(x)^4/x}*x^4/4! + ... - Paul D. Hanna, Dec 15 2010
EXAMPLE
G.f.: A(x) = x + x^2 + 2*x^3 + 6*x^4 + 23*x^5 + 104*x^6 + ...
A(A(x)) = x + 2*x^2 + 6*x^3 + 23*x^4 + 104*x^5 + 531*x^6 + ...
MAPLE
A:= proc(n) option remember;
unapply(`if`(n=0, x,
A(n-1)(x)+coeff(A(n-1)(A(n-1)(x)), x, n) *x^(n+1)), x)
end:
a:= n-> coeff(A(n)(x), x, n):
seq(a(n), n=0..20); # Alois P. Heinz, Feb 24 2012
MATHEMATICA
A[0] = Identity; A[n_] := A[n] = Function[x, Evaluate[A[n-1][x]+Coefficient[A[n-1][A[n-1][x]], x, n]*x^(n+1)]]; a[n_] := Coefficient[A[n][x], x, n]; Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
CoefficientList[Nest[x + x (# /. x -> #) &, O[x], 30], x] (* Vladimir Reshetnikov, Aug 08 2019 *)
PROG
(PARI) {a(n)=local(A=1+x); for(i=0, n, A=1+x*A*subst(A, x, x*A+x*O(x^n))); polcoeff(A, n)} \\ Paul D. Hanna, Mar 10 2007
(PARI) {a(n)=local(A=sum(i=1, n-1, a(i)*x^i)+x*O(x^n)); if(n==0, 0, polcoeff((1+A)^n/n, n-1))} \\ Paul D. Hanna, Nov 18 2008
(PARI) {a(n, m=1)=if(n==0, 1, if(m==0, 0^n, sum(k=0, n, m*binomial(n+m, k)/(n+m)*a(n-k, k))))} \\ Paul D. Hanna, Jul 09 2009
(PARI) {a(n)=local(A=1+sum(i=1, n-1, a(i)*x^i+x*O(x^n)));
for(i=1, n, A=exp(sum(m=1, n, sum(k=0, n-m, binomial(m+k-1, k)*polcoeff(A^(2*m), k)*x^k)*x^m/m)+x*O(x^n))); polcoeff(A, n)} \\ Paul D. Hanna, Dec 15 2010
CROSSREFS
KEYWORD
nonn,nice,eigen
AUTHOR
STATUS
approved