login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A035052
Number of sets of rooted connected graphs where every block is a complete graph.
5
1, 1, 2, 5, 14, 42, 134, 444, 1518, 5318, 18989, 68856, 252901, 938847, 3517082, 13278844, 50475876, 193014868, 741963015, 2865552848, 11113696421, 43266626430, 169019868095, 662337418989, 2602923589451, 10256100717875
OFFSET
0,3
FORMULA
Euler transform of A007563.
a(n) ~ c * d^n / n^(3/2), where d = 4.189610958393826965527036454524... (see A245566), c = 0.35683683547585... . - Vaclav Kotesovec, Jul 26 2014
MAPLE
with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; `if`(n=0, 1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: b:= etr(aa): c:= etr(b): aa:= n-> if n=0 then 0 else c(n-1) fi: a:= etr(aa): seq(a(n), n=0..25); # Alois P. Heinz, Sep 09 2008
MATHEMATICA
etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[ j]}]*b[n-j], {j, 1, n}]/n]; b]; b = etr[aa]; c = etr[b]; aa = Function[{n}, If[n == 0, 0, c[n-1]]]; a = etr[aa]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Mar 05 2015, after Alois P. Heinz *)
PROG
(PARI)
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
seq(n)={my(v=[1]); for(i=2, n, v=concat([1], EulerT(EulerT(v)))); concat([1], EulerT(v))} \\ Andrew Howroyd, May 20 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Christian G. Bower, Oct 15 1998
STATUS
approved