login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of sets of rooted connected graphs where every block is a complete graph.
5

%I #35 May 21 2018 02:58:09

%S 1,1,2,5,14,42,134,444,1518,5318,18989,68856,252901,938847,3517082,

%T 13278844,50475876,193014868,741963015,2865552848,11113696421,

%U 43266626430,169019868095,662337418989,2602923589451,10256100717875

%N Number of sets of rooted connected graphs where every block is a complete graph.

%H T. D. Noe, <a href="/A035052/b035052.txt">Table of n, a(n) for n=0..200</a>

%H Loic Foissy, <a href="https://hal.archives-ouvertes.fr/hal-00808513">The Hopf algebra of Fliess operators and its dual pre-Lie algebra</a>, 2013.

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=862">Encyclopedia of Combinatorial Structures 862</a>

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>

%F Euler transform of A007563.

%F a(n) ~ c * d^n / n^(3/2), where d = 4.189610958393826965527036454524... (see A245566), c = 0.35683683547585... . - _Vaclav Kotesovec_, Jul 26 2014

%p with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; `if`(n=0,1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: b:= etr(aa): c:= etr(b): aa:= n-> if n=0 then 0 else c(n-1) fi: a:= etr(aa): seq(a(n), n=0..25); # _Alois P. Heinz_, Sep 09 2008

%t etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[ j]}]*b[n-j], {j, 1, n}]/n]; b]; b = etr[aa]; c = etr[b]; aa = Function[{n}, If[n == 0, 0, c[n-1]]]; a = etr[aa]; Table[a[n], {n, 0, 25}] (* _Jean-François Alcover_, Mar 05 2015, after _Alois P. Heinz_ *)

%o (PARI)

%o EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}

%o seq(n)={my(v=[1]);for(i=2, n, v=concat([1], EulerT(EulerT(v)))); concat([1], EulerT(v))} \\ _Andrew Howroyd_, May 20 2018

%Y Cf. A007549, A007563, A030019, A035051, A035053.

%Y Cf. A245566.

%K nonn

%O 0,3

%A _Christian G. Bower_, Oct 15 1998