login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A035055
Number of forests of different trees.
2
1, 1, 1, 2, 3, 6, 12, 24, 49, 105, 231, 517, 1188, 2783, 6643, 16101, 39606, 98605, 248287, 631214, 1618878, 4183964, 10889305, 28517954, 75111521, 198851386, 528929895, 1412993746, 3789733399, 10201625514, 27555373561, 74664487653, 202908119046, 552939614498
OFFSET
0,4
LINKS
N. J. A. Sloane, Transforms
FORMULA
Weigh transform of A000055.
a(n) ~ c * d^n / n^(5/2), where d = A051491 = 2.9557652856519949747148175..., c = 0.89246007934060351292465521837... . - Vaclav Kotesovec, Aug 25 2014
MAPLE
with(numtheory):
b:= proc(n) option remember; `if`(n<2, n,
(add(add(d*b(d), d=divisors(j))*b(n-j), j=1..n-1))/(n-1))
end:
h:= proc(n) option remember; `if`(n=0, 1, b(n)-(add(b(k)*b(n-k),
k=0..n) -`if`(irem(n, 2)=0, b(n/2), 0))/2)
end:
g:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(binomial(h(i), j)*g(n-i*j, i-1), j=0..n/i)))
end:
a:= n-> g(n, n):
seq(a(n), n=0..40); # Alois P. Heinz, May 19 2013
MATHEMATICA
nn = 20; t[x_] := Sum[a[n] x^n, {n, 1, nn}]; a[0] = 0;
b = Flatten[
sol = SolveAlways[
0 == Series[
t[x] - x Product[1/(1 - x^i)^ a[i], {i, 1, nn}], {x, 0, nn}],
x]; Table[a[n], {n, 0, nn}] /. sol];
r[x_] := Sum[b[[n]] x^(n - 1), {n, 1, nn + 1}]; c =
Drop[CoefficientList[
Series[r[x] - (r[x]^2/2 - r[x^2]/2), {x, 0, nn}], x],
1]; CoefficientList[
Series[Product[(1 + x^i)^c[[i]], {i, 1, nn}], {x, 0, nn}], x] (* Geoffrey Critzer, Nov 15 2014 *)
CROSSREFS
Cf. A005195.
Sequence in context: A042950 A098011 A367222 * A119559 A375578 A329675
KEYWORD
nonn
AUTHOR
Christian G. Bower, Oct 15 1998
STATUS
approved