This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A042950 Row sums of the Lucas triangle A029635. 27
 2, 3, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98304, 196608, 393216, 786432, 1572864, 3145728, 6291456, 12582912, 25165824, 50331648, 100663296, 201326592, 402653184, 805306368, 1610612736, 3221225472, 6442450944 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Map a binary sequence b=[ b_1,...] to a binary sequence c=[ c_1,...] so that C = 1/Product((1-x^i)^c_i == 1+Sum b_i*x^i mod 2. This produces 2 new sequences: d={i:c_i=1} and e=[ 1,e_1,... ] where C = 1 + Sum e_i*x^i. This sequence is d when b=[ 0,1,1,1,1,...]. Number of rises after n+1 iterations of morphism A007413. a(n) written in base 2: a(0) = 10, a(n) for n >= 1: 11, 110, 11000, 110000, ..., i.e.: 2 times 1, (n-1) times 0 (see A003953(n)). - Jaroslav Krizek, Aug 17 2009 Row sums of the Lucas triangle A029635. - Sergio Falcon, Mar 17 2014 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 S. Kitaev and T. Mansour, Counting the occurrences of generalized patterns in words generated by a morphism, arXiv:math/0210170 [math.CO], 2002. FORMULA G.f.: (2-x)/(1-2*x). a(n) = 2*a(n-1), n > 1; a(0)=2, a(1)=3. a(n) = A003945(n), for n > 0. From Paul Barry, Dec 06 2004: (Start) Binomial transform of 2, 1, 2, 1, 2, 1, ... = (3+(-1)^n)/2. a(n) = (3*2^n + 0^n)/2. (End) a(0) = 2, a(n) = 3*2^(n-1) = 2^n + 2^(n-1) for n >= 1. - Jaroslav Krizek, Aug 17 2009 a(n) = 2^(n+1) - 2^(n-1), for n > 0. - Ilya Gutkovskiy, Aug 08 2015 MATHEMATICA Table[ Ceiling[3*2^(n - 1)], {n, 0, 32}] (* Robert G. Wilson v, Jul 08 2006 *) a[0] = 2; a[1] = 3; a[n_] := 2a[n - 1]; Table[a[n], {n, 0, 32}] (* Robert G. Wilson v, Jul 08 2006 *) f[s_] := Append[s, 1 + Plus @@ s]; Nest[f, {2}, 32] (* Robert G. Wilson v, Jul 08 2006 *) CoefficientList[Series[(2 - x)/(1 - 2x), {x, 0, 32}], x] (* Robert G. Wilson v, Jul 08 2006 *) PROG (PARI) a(n)=ceil(3*2^(n-1)) (MAGMA) [2] cat [2^(n+1) - 2^(n-1): n in [1..40]]; // Vincenzo Librandi, Aug 08 2015 CROSSREFS Cf. A007283. Sequence in context: A251766 A098011 A110164 * A035055 A119559 A045761 Adjacent sequences:  A042947 A042948 A042949 * A042951 A042952 A042953 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 22 07:29 EDT 2019. Contains 328315 sequences. (Running on oeis4.)