The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A007413 A squarefree (or Thue-Morse) ternary sequence: closed under 1->123, 2->13, 3->2. Start with 1. (Formerly M0406) 23
 1, 2, 3, 1, 3, 2, 1, 2, 3, 2, 1, 3, 1, 2, 3, 1, 3, 2, 1, 3, 1, 2, 3, 2, 1, 2, 3, 1, 3, 2, 1, 2, 3, 2, 1, 3, 1, 2, 3, 2, 1, 2, 3, 1, 3, 2, 1, 3, 1, 2, 3, 1, 3, 2, 1, 2, 3, 2, 1, 3, 1, 2, 3, 1, 3, 2, 1, 3, 1, 2, 3, 2, 1, 2, 3, 1, 3, 2, 1, 3, 1, 2, 3, 1, 3, 2, 1, 2, 3, 2, 1, 3, 1, 2, 3, 2, 1, 2, 3, 1, 3, 2, 1, 2, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS a(n)=2 if and only if n-1 is in A079523. - Benoit Cloitre, Mar 10 2003 Partial sums modulo 4 of the sequence 1, a(1), a(1), a(2), a(2), a(3), a(3), a(4), a(4), a(5), a(5), a(6), a(6), ... - Philippe Deléham, Mar 04 2004 To construct the sequence: start with 1 and concatenate 4 -1 = 3: 1, 3, then change the last term (2 -> 1, 3 ->2 ) gives 1, 2. Concatenate 1, 2 with 4 -1 = 3, 4 - 2 = 2: 1, 2, 3, 2 and change the last term: 1, 2, 3, 1. Concatenate 1, 2, 3, 1 with 4 - 1 = 3, 4 - 2 = 2, 4 - 3 = 1, 4 - 1 = 3: 1, 2, 3, 1, 3, 2, 1, 3 and change the last term: 1, 2, 3, 1, 3, 2, 1, 2 etc. - Philippe Deléham, Mar 04 2004 To construct the sequence: start with the Thue-Morse sequence A010060 = 0, 1, 1, 0, 1, 0, 0, 1, ... Then change 0 -> 1, 2, 3, _ and 1 -> 3, 2, 1, _ gives: 1, 2, 3, _, 3, 2, 1, _,3, 2, 1, _, 1, 2, 3, _, 3, 2, 1, _, ... and fill in the successive holes with the successive terms of the sequence itself. - Philippe Deléham, Mar 04 2004 To construct the sequence: to insert the number 2 between the A003156(k)-th term and the (1 + A003156(k))-th term of the sequence 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, ... - Philippe Deléham, Mar 04 2004 Conjecture. The sequence is formed by the numbers of 1's between every pair of consecutive 2's in A076826. - Vladimir Shevelev, May 31 2009 REFERENCES James D. Currie, Non-repetitive words: Ages and essences, Combinatorica 16.1 (1996): 19-40. See p. 20. Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2. J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 18. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). A. Thue, Über unendliche Zeichenreihen, Norske Vid. Selsk. Skr. I. Mat. Nat. Kl. Christiania, No. 7 (1906), 1-22. LINKS Roger L. Bagula, Description of sequence as successive rows of a triangle James D. Currie, Palindrome positions in ternary square-free words, Theoretical Computer Science, 396 (2008) 254-257. F. Michel Dekking, Morphisms, Symbolic Sequences, and Their Standard Forms, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.1. V. Keranen, New Abelian Square-Free DT0L-Languages over 4 Letters, Theoretical Computer Science, Volume 410, Issues 38-40, 6 September 2009, Pages 3893-3900. S. Kitaev and T. Mansour, Counting the occurrences of generalized patterns in words generated by a morphism, arXiv:math/0210170 [math.CO], 2002. Andrzej Tomski and Maciej Zakarczemny, A note on Browkin's and Cao's cancellation algorithm, Technical Transections 7/2018. FORMULA a(n) modulo 2 = A035263(n). a(A036554(n)) = 2. a(A003159(n)) = 1 if n odd. a(A003159(n)) = 3 if n even. a(n) = A033485(n) mod 4. a(n) = 4 - A036585(n-1). - Philippe Deléham, Mar 04 2004 a(n) = 2 - A029883(n) = 3 - A036577(n). - Philippe Deléham, Mar 20 2004 For n>=1, we have: 1) a(A108269(n))=A010684(n-1); 2) a(A079523(n))=A010684(n-1); 3) a(A081706(2n))=A010684(n). - Vladimir Shevelev, Jun 22 2009 EXAMPLE Here are the first 5 stages in the construction of this sequence, together with Mma code, taken from Keranen's article. His alphabet is a,b,c rather than 1,2,3. productions = {"a" -> "abc ", "b" -> "ac ", "c" -> "b ", " " -> ""}; NestList[g, "a", 5] // TableForm a abc abc ac b abc ac b abc b ac abc ac b abc b ac abc ac b ac abc b abc ac b abc b ac abc ac b ac abc b abc ac b abc b ac abc b abc ac b ac MATHEMATICA Nest[ Flatten[ # /. {1 -> {1, 2, 3}, 2 -> {1, 3}, 3 -> {2}}] &, {1}, 7] (* Robert G. Wilson v, May 07 2005 *) PROG (PARI) {a(n) = if( n<1 || valuation(n, 2)%2, 2, 2 + (-1)^subst( Pol(binary(n)), x, 1))}; CROSSREFS Cf. A001285, A010060. First differences of A000069. Equals A036580(n-1) + 1. Cf. A115384, A159481, A079523, A000120. Sequence in context: A057039 A260449 A135511 * A277750 A325520 A072457 Adjacent sequences:  A007410 A007411 A007412 * A007414 A007415 A007416 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 11 08:10 EDT 2021. Contains 342886 sequences. (Running on oeis4.)