|
|
A036585
|
|
Ternary Thue-Morse sequence: closed under a->abc, b->ac, c->b.
|
|
9
|
|
|
3, 2, 1, 3, 1, 2, 3, 2, 1, 2, 3, 1, 3, 2, 1, 3, 1, 2, 3, 1, 3, 2, 1, 2, 3, 2, 1, 3, 1, 2, 3, 2, 1, 2, 3, 1, 3, 2, 1, 2, 3, 2, 1, 3, 1, 2, 3, 1, 3, 2, 1, 3, 1, 2, 3, 2, 1, 2, 3, 1, 3, 2, 1, 3, 1, 2, 3, 1, 3, 2, 1, 2, 3, 2, 1, 3, 1, 2, 3, 1, 3, 2, 1, 3, 1, 2, 3, 2, 1, 2, 3, 1, 3, 2, 1, 2, 3, 2, 1, 3, 1, 2, 3, 2, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
First differences of A001969. Observed by Franklin T. Adams-Watters, proved by Max Alekseyev, Aug 30 2006
|
|
REFERENCES
|
M. Lothaire, Combinatorics on Words. Addison-Wesley, Reading, MA, 1983, p. 26.
|
|
LINKS
|
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
|
|
FORMULA
|
a(n) = A001969(n+1) - A001969(n). - Franklin T. Adams-Watters, Aug 28 2006
a(n) = A029883(n) + 2 = A036577(n) + 1.
|
|
PROG
|
(PARI) a(n)=if(n<1 || valuation(n, 2)%2, 2, 2-(-1)^subst(Pol(binary(n)), x, 1))
(Haskell)
a036585 n = a036585_list !! (n-1)
a036585_list = 3 : concat (map f a036585_list)
where f 1 = [1, 2, 3]; f 2 = [1, 3]; f 3 = [2]
-- Reinhard Zumkeller, Oct 31 2012
def A036585(n): return 2+(n.bit_count()&1)-((n-1).bit_count()&1) # Chai Wah Wu, Mar 03 2023
|
|
CROSSREFS
|
Cf. A001969, A007413, A005679.
Sequence in context: A237881 A112745 A205564 * A260454 A164848 A213514
Adjacent sequences: A036582 A036583 A036584 * A036586 A036587 A036588
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane.
|
|
STATUS
|
approved
|
|
|
|