The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A164848 a(n) = A026741(n)/A051712(n+1). 1
 1, 1, 3, 2, 1, 3, 1, 4, 3, 1, 1, 6, 1, 1, 3, 4, 1, 3, 1, 2, 3, 1, 1, 12, 1, 1, 3, 2, 1, 3, 1, 4, 3, 1, 1, 6, 1, 1, 3, 4, 1, 3, 1, 2, 3, 1, 1, 12, 1, 1, 3, 2, 1, 3, 1, 4, 3, 1, 1, 6, 1, 1, 3, 4, 1, 3, 1, 2, 3, 1, 1, 12, 1, 1, 3, 2, 1, 3, 1, 4, 3, 1, 1, 6, 1, 1, 3, 4, 1, 3, 1, 2, 3, 1, 1, 12, 1, 1, 3, 2, 1, 3, 1, 4, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Twice connected to Bernoulli numbers A164555/A027642 via the Akiyama-Tanigawa algorithm. Conjecture (checked for the first 3000 entries): periodic with a(n+24)=a(n). Is this a multiplicative function? Multiplicative because both A026741 and A051712(n+1) are. - Andrew Howroyd, Jul 26 2018 LINKS Table of n, a(n) for n=1..105. FORMULA a(n) = gcd(12, n/gcd(2, n)). - Andrew Howroyd, Jul 26 2018 From Amiram Eldar, Oct 28 2023: (Start) Multiplicative with a(2^3) = 2^min(e-1,2), a(3^e) = 3, and a(p^e) = 1 for a prime p >= 5. Dirichlet g.f.: zeta(s) * (1 + 1/2^(2*s) + 1/2^(3*s-1)) * (1 + 2/3^s). Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 5/2. (End) MAPLE b := proc(n) n/(n+1)/(n+2) ; end: A051712 := proc(n) numer( b(n)-b(n+1)) ; end: A026741 := proc(n) if type(n, 'odd') then n; else n/2; fi; end: A164848 := proc(n) A026741(n)/A051712(n+1) ; end: seq(A164848(n), n=1..120) ; # R. J. Mathar, Sep 06 2009 MATHEMATICA Table[GCD[12, n / GCD[2, n]], {n, 100}] (* Vincenzo Librandi, Jul 26 2018 *) PROG (PARI) a(n) = gcd(12, n/gcd(2, n)); \\ Andrew Howroyd, Jul 26 2018 (Magma) [Gcd(12, n div Gcd(2, n)): n in [1..100]]; // Vincenzo Librandi, Jul 26 2018 CROSSREFS Cf. A026741, A027642, A051712, A164555. Sequence in context: A205564 A036585 A260454 * A213514 A130827 A070309 Adjacent sequences: A164845 A164846 A164847 * A164849 A164850 A164851 KEYWORD nonn,easy,mult AUTHOR Paul Curtz, Aug 28 2009 EXTENSIONS Offset set to 1 by R. J. Mathar, Sep 06 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 14 04:12 EDT 2024. Contains 373393 sequences. (Running on oeis4.)