login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A164848
a(n) = A026741(n)/A051712(n+1).
1
1, 1, 3, 2, 1, 3, 1, 4, 3, 1, 1, 6, 1, 1, 3, 4, 1, 3, 1, 2, 3, 1, 1, 12, 1, 1, 3, 2, 1, 3, 1, 4, 3, 1, 1, 6, 1, 1, 3, 4, 1, 3, 1, 2, 3, 1, 1, 12, 1, 1, 3, 2, 1, 3, 1, 4, 3, 1, 1, 6, 1, 1, 3, 4, 1, 3, 1, 2, 3, 1, 1, 12, 1, 1, 3, 2, 1, 3, 1, 4, 3, 1, 1, 6, 1, 1, 3, 4, 1, 3, 1, 2, 3, 1, 1, 12, 1, 1, 3, 2, 1, 3, 1, 4, 3
OFFSET
1,3
COMMENTS
Twice connected to Bernoulli numbers A164555/A027642 via the Akiyama-Tanigawa algorithm.
Conjecture (checked for the first 3000 entries): periodic with a(n+24)=a(n).
Is this a multiplicative function?
Multiplicative because both A026741 and A051712(n+1) are. - Andrew Howroyd, Jul 26 2018
LINKS
FORMULA
a(n) = gcd(12, n/gcd(2, n)). - Andrew Howroyd, Jul 26 2018
From Amiram Eldar, Oct 28 2023: (Start)
Multiplicative with a(2^3) = 2^min(e-1,2), a(3^e) = 3, and a(p^e) = 1 for a prime p >= 5.
Dirichlet g.f.: zeta(s) * (1 + 1/2^(2*s) + 1/2^(3*s-1)) * (1 + 2/3^s).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 5/2. (End)
MAPLE
b := proc(n) n/(n+1)/(n+2) ; end: A051712 := proc(n) numer( b(n)-b(n+1)) ; end:
A026741 := proc(n) if type(n, 'odd') then n; else n/2; fi; end:
A164848 := proc(n) A026741(n)/A051712(n+1) ; end: seq(A164848(n), n=1..120) ; # R. J. Mathar, Sep 06 2009
MATHEMATICA
Table[GCD[12, n / GCD[2, n]], {n, 100}] (* Vincenzo Librandi, Jul 26 2018 *)
PROG
(PARI) a(n) = gcd(12, n/gcd(2, n)); \\ Andrew Howroyd, Jul 26 2018
(Magma) [Gcd(12, n div Gcd(2, n)): n in [1..100]]; // Vincenzo Librandi, Jul 26 2018
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Paul Curtz, Aug 28 2009
EXTENSIONS
Offset set to 1 by R. J. Mathar, Sep 06 2009
STATUS
approved