Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Jul 02 2024 14:43:29
%S 1,1,3,2,1,3,1,4,3,1,1,6,1,1,3,4,1,3,1,2,3,1,1,12,1,1,3,2,1,3,1,4,3,1,
%T 1,6,1,1,3,4,1,3,1,2,3,1,1,12,1,1,3,2,1,3,1,4,3,1,1,6,1,1,3,4,1,3,1,2,
%U 3,1,1,12,1,1,3,2,1,3,1,4,3,1,1,6,1,1,3,4,1,3,1,2,3,1,1,12,1,1,3,2,1,3,1,4,3
%N a(n) = A026741(n)/A051712(n+1).
%C Twice connected to Bernoulli numbers A164555/A027642 via the Akiyama-Tanigawa algorithm.
%C Conjecture (checked for the first 3000 entries): periodic with a(n+24)=a(n).
%C Is this a multiplicative function?
%C Multiplicative because both A026741 and A051712(n+1) are. - _Andrew Howroyd_, Jul 26 2018
%H Antti Karttunen, <a href="/A164848/b164848.txt">Table of n, a(n) for n = 1..65537</a>
%F a(n) = gcd(12, n/gcd(2, n)). - _Andrew Howroyd_, Jul 26 2018
%F From _Amiram Eldar_, Oct 28 2023: (Start)
%F Multiplicative with a(2^3) = 2^min(e-1,2), a(3^e) = 3, and a(p^e) = 1 for a prime p >= 5.
%F Dirichlet g.f.: zeta(s) * (1 + 1/2^(2*s) + 1/2^(3*s-1)) * (1 + 2/3^s).
%F Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 5/2. (End)
%p b := proc(n) n/(n+1)/(n+2) ; end: A051712 := proc(n) numer( b(n)-b(n+1)) ; end:
%p A026741 := proc(n) if type(n,'odd') then n; else n/2; fi; end:
%p A164848 := proc(n) A026741(n)/A051712(n+1) ; end: seq(A164848(n),n=1..120) ; # _R. J. Mathar_, Sep 06 2009
%t Table[GCD[12, n / GCD[2, n]], {n, 100}] (* _Vincenzo Librandi_, Jul 26 2018 *)
%o (PARI) a(n) = gcd(12, n/gcd(2, n)); \\ _Andrew Howroyd_, Jul 26 2018
%o (Magma) [Gcd(12, n div Gcd(2, n)): n in [1..100]]; // _Vincenzo Librandi_, Jul 26 2018
%Y Cf. A026741, A027642, A051712, A164555.
%K nonn,easy,mult
%O 1,3
%A _Paul Curtz_, Aug 28 2009
%E Offset set to 1 by _R. J. Mathar_, Sep 06 2009