login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A164851
Generalized Lucas-Pascal triangle; (11*10^n, 1).
4
1, 11, 1, 110, 12, 1, 1100, 122, 13, 1, 11000, 1222, 135, 14, 1, 110000, 12222, 1357, 149, 15, 1, 1100000, 122222, 13579, 1506, 164, 16, 1, 11000000, 1222222, 135801, 15085, 1670, 180, 17, 1
OFFSET
0,2
LINKS
Robert Israel, Table of n, a(n) for n = 0..10010(rows 0 to 140, flattened)
FORMULA
T(0,0)=1, T(n+1,0)=11*10^n, T(n,n)=1, T(n,k)=T(n-1,k-1)+T(n-1,k) for 0<k<n. - Philippe Deléham, Dec 27 2013
G.f. as triangle: (1-x^2)/((1-10*x)*(1-x-x*y)). - Robert Israel, Jul 17 2017
EXAMPLE
Triangle begins:
1;
11, 1;
110, 12, 1;
1100, 122, 13, 1;
11000, 1222, 135, 14, 1;
110000, 12222, 1357, 149, 15, 1;
1100000, 122222, 13579, 1506, 164, 16, 1;
11000000,1222222, 135801, 15085, 1670, 180, 17, 1;
...
MAPLE
G[0]:= 1;
G[1]:= 11+x;
G[2]:= 110+12*x+x^2;
for nn from 3 to 20 do
G[nn]:= expand((x+11)*G[nn-1]-10*(x+1)*G[nn-2]);
od:
seq(seq(coeff(G[n], x, j), j=0..n), n=0..20); # Robert Israel, Jul 17 2017
MATHEMATICA
T[0, 0] := 1; T[n_, n_] := 1; T[n_, 0] := 11*10^(n - 1); T[n_, k_] := T[n - 1, k - 1] + T[n - 1, k]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] //Flatten (* G. C. Greubel, Dec 22 2017 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Mark Dols, Aug 28 2009
EXTENSIONS
Initial 1 added by Philippe Deléham, Dec 27 2013
STATUS
approved