login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A228196 A triangle formed like Pascal's triangle, but with n^2 on the left border and 2^n on the right border instead of 1. 30
0, 1, 2, 4, 3, 4, 9, 7, 7, 8, 16, 16, 14, 15, 16, 25, 32, 30, 29, 31, 32, 36, 57, 62, 59, 60, 63, 64, 49, 93, 119, 121, 119, 123, 127, 128, 64, 142, 212, 240, 240, 242, 250, 255, 256, 81, 206, 354, 452, 480, 482, 492, 505, 511, 512, 100, 287, 560, 806, 932, 962, 974, 997, 1016, 1023, 1024 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

The third row is (n^4 - n^2 + 24*n + 24)/12.

For a closed-form formula for generalized Pascal's triangle see A228576. - Boris Putievskiy, Sep 04 2013

LINKS

Boris Putievskiy, Rows n = 1..140 of triangle, flattened

Rely Pellicer, David Alvo, Modified Pascal Triangle and Pascal Surfaces p.4

Index entries for triangles and arrays related to Pascal's triangle

FORMULA

T(n,0) = n^2, n>0; T(0,k) = 2^k; T(n, k) = T(n-1, k-1) + T(n-1, k) for n,k >0. [corrected by G. C. Greubel, Nov 12 2019]

Closed-form formula for general case. Let L(m) and R(m) be the left border and the right border of Pascal like triangle, respectively. We denote binomial(n,k) by C(n,k).

As table read by antidiagonals T(n,k) = Sum_{m1=1..n} R(m1)*C(n+k-m1-1, n-m1) + Sum_{m2=1..k} L(m2)*C(n+k-m2-1, k-m2); n,k >=0.

As linear sequence a(n) = Sum_{m1=1..i} R(m1)*C(i+j-m1-1, i-m1) + Sum_{m2=1..j} L(m2)*C(i+j-m2-1, j-m2), where  i=n-t*(t+1)/2-1, j=(t*t+3*t+4)/2-n-1, t=floor((-1+sqrt(8*n-7))/2); n>0.

Some special cases. If  L(m)={b,b,b...} b*A000012, then the second sum takes form b*C(n+k-1,j). If  L(m) is {0,b,2b,...} b*A001477, then the second sum takes form b*C(n+k,n-1). Similarly for R(m) and the first sum.

For this sequence  L(m)=m^2 and R(m)=2^m.

As table read by antidiagonals T(n,k) = Sum_{m1=1..n} (2^m1)*C(n+k-m1-1, n-m1) + Sum_{m2=1..k} (m2^2)*C(n+k-m2-1, k-m2); n,k >=0.

As linear sequence a(n) = Sum_{m1=1..i} (2^m1)*C(i+j-m1-1, i-m1) + Sum_{m2=1..j} (m2^2)*C(i+j-m2-1, j-m2), where  i=n-t*(t+1)/2-1, j=(t*t+3*t+4)/2-n-1, t=floor((-1+sqrt(8*n-7))/2).

EXAMPLE

The start of the sequence as triangle array read by rows:

   0;

   1,  2;

   4,  3,  4;

   9,  7,  7,  8;

  16, 16, 14, 15, 16;

  25, 32, 30, 29, 31, 32;

  36, 57, 62, 59, 60, 63, 64;

MAPLE

T:= proc(n, k) option remember;

      if k=0 then n^2

    elif k=n then 2^k

    else T(n-1, k-1) + T(n-1, k)

      fi

    end:

seq(seq(T(n, k), k=0..n), n=0..10); # G. C. Greubel, Nov 12 2019

MATHEMATICA

T[n_, k_]:= T[n, k] = If[k==0, n^2, If[k==n, 2^k, T[n-1, k-1] + T[n-1, k]]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 12 2019 *)

PROG

(Python)

def funcL(n):

   q = n**2

   return q

def funcR(n):

   q = 2**n

   return q

for n in range (1, 9871):

   t=int((math.sqrt(8*n-7) - 1)/ 2)

   i=n-t*(t+1)/2-1

   j=(t*t+3*t+4)/2-n-1

   sum1=0

   sum2=0

   for m1 in range (1, i+1):

      sum1=sum1+funcR(m1)*binomial(i+j-m1-1, i-m1)

   for m2 in range (1, j+1):

      sum2=sum2+funcL(m2)*binomial(i+j-m2-1, j-m2)

   sum=sum1+sum2

(PARI) T(n, k) = if(k==0, n^2, if(k==n, 2^k, T(n-1, k-1) + T(n-1, k) )); \\ G. C. Greubel, Nov 12 2019

(Sage)

@CachedFunction

def T(n, k):

    if (k==0): return n^2

    elif (k==n): return 2^n

    else: return T(n-1, k-1) + T(n-1, k)

[[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Nov 12 2019

(GAP)

T:= function(n, k)

    if k=0 then return n^2;

    elif k=n then return 2^n;

    else return T(n-1, k-1) + T(n-1, k);

    fi;

  end;

Flat(List([0..12], n-> List([0..n], k-> T(n, k) ))); # G. C. Greubel, Nov 12 2019

CROSSREFS

Cf. We denote Pascal like triangle with L(n) on the left border and R(n) on the right border by (L(n),R(n)). A007318 (1,1), A008949 (1,2^n), A029600 (2,3), A029618 (3,2), A029635 (1,2), A029653 (2,1), A037027 (Fibonacci(n),1), A051601 (n,n) n>=0, A051597 (n,n) n>0, A051666 (n^2,n^2), A071919 (1,0), A074829 (Fibonacci(n), Fibonacci(n)), A074909 (1,n), A093560 (3,1), A093561 (4,1), A093562 (5,1), A093563 (6,1), A093564 (7,1), A093565 (8,1), A093644 (9,1), A093645 (10,1), A095660 (1,3), A095666 (1,4), A096940 (1,5), A096956 (1,6), A106516 (3^n,1), A108561(1,(-1)^n), A132200 (4,4), A134636 (2n+1,2n+1), A137688 (2^n,2^n), A160760 (3^(n-1),1), A164844(1,10^n), A164847 (100^n,1), A164855 (101*100^n,1), A164866 (101^n,1), A172171 (1,9), A172185 (9,11), A172283 (-9,11), A177954 (int(n/2),1), A193820 (1,2^n), A214292 (n,-n), A227074 (4^n,4^n), A227075 (3^n,3^n), A227076 (5^n,5^n), A227550 (n!,n!), A228053 ((-1)^n,(-1)^n), A228074 (Fibonacci(n), n).

Cf. A000290 (row 1), A153056 (row 2), A000079 (column 1), A000225 (column 2), A132753 (column 3), A118885 (row sums of triangle array + 1), A228576 (generalized Pascal's triangle).

Sequence in context: A332224 A080001 A178938 * A261326 A136743 A011387

Adjacent sequences:  A228193 A228194 A228195 * A228197 A228198 A228199

KEYWORD

nonn,tabl

AUTHOR

Boris Putievskiy, Aug 15 2013

EXTENSIONS

Cross-references corrected and extended by Philippe Deléham, Dec 27 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 14 05:39 EDT 2020. Contains 335716 sequences. (Running on oeis4.)