login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227075
A triangle formed like Pascal's triangle, but with 3^n on the borders instead of 1.
6
1, 3, 3, 9, 6, 9, 27, 15, 15, 27, 81, 42, 30, 42, 81, 243, 123, 72, 72, 123, 243, 729, 366, 195, 144, 195, 366, 729, 2187, 1095, 561, 339, 339, 561, 1095, 2187, 6561, 3282, 1656, 900, 678, 900, 1656, 3282, 6561, 19683, 9843, 4938, 2556, 1578, 1578, 2556, 4938
OFFSET
0,2
COMMENTS
All rows except the zeroth are divisible by 3. Is there a closed-form formula for these numbers, like for binomial coefficients?
Let b=3 and T(n,k) = A(n-k,k) be the associated reading of the symmetric array A by antidiagonals, then A(n,k) = sum_{r=1..n} b^r*A178300(n-r,k) + sum_{c=1..k} b^c*A178300(k-c,n). Similarly with b=4 and b=5 for A227074 and A227076. - R. J. Mathar, Aug 10 2013
EXAMPLE
Triangle:
1,
3, 3,
9, 6, 9,
27, 15, 15, 27,
81, 42, 30, 42, 81,
243, 123, 72, 72, 123, 243,
729, 366, 195, 144, 195, 366, 729,
2187, 1095, 561, 339, 339, 561, 1095, 2187,
6561, 3282, 1656, 900, 678, 900, 1656, 3282, 6561
MATHEMATICA
t = {}; Do[r = {}; Do[If[k == 0 || k == n, m = 3^n, m = t[[n, k]] + t[[n, k + 1]]]; r = AppendTo[r, m], {k, 0, n}]; AppendTo[t, r], {n, 0, 10}]; t = Flatten[t]
CROSSREFS
Cf. A007318 (Pascal's triangle), A228053 ((-1)^n on the borders).
Cf. A051601 (n on the borders), A137688 (2^n on borders).
Cf. A166060 (row sums: 4*3^n - 3*2^n), A227074 (4^n edges), A227076 (5^n edges).
Sequence in context: A197414 A247571 A292885 * A165351 A215665 A200494
KEYWORD
nonn,tabl
AUTHOR
T. D. Noe, Aug 01 2013
STATUS
approved