login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A227077 y solutions to the Diophantine equation 2*x^2*(x^2 - 1) = 3*(y^2 - 1) 1
1, 3, 7, 29, 6761 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Also solutions to (2*x^2 - 1)^2 = 6*y^2 - 5 as outlined in A180445, which gives the x solutions to this equation {1, 2, 3, 6, 91}.

(sqrt(2)*sqrt(sqrt(6*a(n)^2 - 5) + 1) - 1)^2 = A038198(n)^2 gives the Ramanujan-Nagell squares listed in A227078.

LINKS

Table of n, a(n) for n=0..4.

Richard K. Guy, The Strong Law of Small Numbers (example #29).

MATHEMATICA

Select[Table[Sqrt[3-2x^2+2x^4]/Sqrt[3], {x, 0, 100}], IntegerQ]//Union (* Harvey P. Dale, Aug 11 2019 *)

CROSSREFS

Cf. A180445, A038198, A227078.

Sequence in context: A061955 A113834 A057181 * A136934 A201794 A188229

Adjacent sequences:  A227074 A227075 A227076 * A227078 A227079 A227080

KEYWORD

nonn

AUTHOR

Raphie Frank, Jun 30 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 21 04:22 EST 2019. Contains 329350 sequences. (Running on oeis4.)