login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227076
A triangle formed like Pascal's triangle, but with 5^n on the borders instead of 1.
5
1, 5, 5, 25, 10, 25, 125, 35, 35, 125, 625, 160, 70, 160, 625, 3125, 785, 230, 230, 785, 3125, 15625, 3910, 1015, 460, 1015, 3910, 15625, 78125, 19535, 4925, 1475, 1475, 4925, 19535, 78125, 390625, 97660, 24460, 6400, 2950, 6400, 24460, 97660, 390625
OFFSET
0,2
COMMENTS
All rows except the zeroth are divisible by 5. Is there a closed-form formula for these numbers, like for binomial coefficients?
FORMULA
T(n,0) = 5^n. T(n,1) = 5*A047850(n-1). T(n,2) = 5*(5^n/80 + 3*n/4 + 51/16). T(n,3) = 5*(5^n/320 + 45*n/16 + 3*n^2/8 + 819/64). - R. J. Mathar, Aug 09 2013
EXAMPLE
Example:
1,
5, 5,
25, 10, 25,
125, 35, 35, 125,
625, 160, 70, 160, 625,
3125, 785, 230, 230, 785, 3125,
15625, 3910, 1015, 460, 1015, 3910, 15625,
78125, 19535, 4925, 1475, 1475, 4925, 19535, 78125,
390625, 97660, 24460, 6400, 2950, 6400, 24460, 97660, 390625
MAPLE
A227076 := proc(n, k)
if k = 0 or k = n then
5^n ;
elif k < 0 or k > n then
0;
else
procname(n-1, k)+procname(n-1, k-1) ;
end if;
end proc: # R. J. Mathar, Aug 09 2013
MATHEMATICA
t = {}; Do[r = {}; Do[If[k == 0 || k == n, m = 5^n, m = t[[n, k]] + t[[n, k + 1]]]; r = AppendTo[r, m], {k, 0, n}]; AppendTo[t, r], {n, 0, 10}]; t = Flatten[t]
CROSSREFS
Cf. A007318 (Pascal's triangle), A228053 ((-1)^n on the borders).
Cf. A051601 (n on the borders), A137688 (2^n on borders).
Cf. A083585 (row sums: (8*5^n - 5*2^n)/3), A227074 (4^n edges), A227075 (3^n edges).
Sequence in context: A256693 A255458 A256135 * A223186 A071340 A162962
KEYWORD
nonn,tabl
AUTHOR
T. D. Noe, Aug 06 2013
STATUS
approved