login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227076
A triangle formed like Pascal's triangle, but with 5^n on the borders instead of 1.
5
1, 5, 5, 25, 10, 25, 125, 35, 35, 125, 625, 160, 70, 160, 625, 3125, 785, 230, 230, 785, 3125, 15625, 3910, 1015, 460, 1015, 3910, 15625, 78125, 19535, 4925, 1475, 1475, 4925, 19535, 78125, 390625, 97660, 24460, 6400, 2950, 6400, 24460, 97660, 390625
OFFSET
0,2
COMMENTS
All rows except the zeroth are divisible by 5. Is there a closed-form formula for these numbers, as there is for binomial coefficients?
FORMULA
From R. J. Mathar, Aug 09 2013: (Start)
T(n,0) = 5^n.
T(n,1) = 5*A047850(n-1).
T(n,2) = 5*(5^n/80 + 3*n/4 + 51/16).
T(n,3) = 5*(5^n/320 + 45*n/16 + 3*n^2/8 + 819/64). (End)
Sum_{k=0..n} (-1)^k*T(n, k) = 20*(1+(-1)^n)*A009969(floor((n-1)/2)) - (3/5)*[n = 0]. - G. C. Greubel, Jan 10 2025
EXAMPLE
Triangle begins as:
1;
5, 5;
25, 10, 25;
125, 35, 35, 125;
625, 160, 70, 160, 625;
3125, 785, 230, 230, 785, 3125;
15625, 3910, 1015, 460, 1015, 3910, 15625;
78125, 19535, 4925, 1475, 1475, 4925, 19535, 78125;
390625, 97660, 24460, 6400, 2950, 6400, 24460, 97660, 390625;
MAPLE
A227076 := proc(n, k)
if k = 0 or k = n then
5^n ;
elif k < 0 or k > n then
0;
else
procname(n-1, k)+procname(n-1, k-1) ;
end if;
end proc: # R. J. Mathar, Aug 09 2013
MATHEMATICA
t = {}; Do[r = {}; Do[If[k == 0 || k == n, m = 5^n, m = t[[n, k]] + t[[n, k + 1]]]; r = AppendTo[r, m], {k, 0, n}]; AppendTo[t, r], {n, 0, 10}]; t = Flatten[t]
PROG
(Magma)
function T(n, k) // T = A227076
if k eq 0 or k eq n then return 5^n;
else return T(n-1, k) + T(n-1, k-1);
end if;
end function;
[T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 10 2025
(Python)
from sage.all import *
@CachedFunction
def T(n, k): # T = A227076
if k==0 or k==n: return pow(5, n)
else: return T(n-1, k) + T(n-1, k-1)
print(flatten([[T(n, k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Jan 10 2025
CROSSREFS
Cf. A007318 (Pascal's triangle), A228053 ((-1)^n on the borders).
Cf. A051601 (n on the borders), A137688 (2^n on borders).
Cf. A083585 (row sums: (8*5^n - 5*2^n)/3), A227074 (4^n edges), A227075 (3^n edges).
Cf. A000351.
Sequence in context: A256693 A255458 A256135 * A223186 A071340 A162962
KEYWORD
nonn,tabl,changed
AUTHOR
T. D. Noe, Aug 06 2013
STATUS
approved