OFFSET
0,2
COMMENTS
All rows except the zeroth are divisible by 5. Is there a closed-form formula for these numbers, like for binomial coefficients?
LINKS
T. D. Noe, Rows n = 0..50 of triangle, flattened
FORMULA
T(n,0) = 5^n. T(n,1) = 5*A047850(n-1). T(n,2) = 5*(5^n/80 + 3*n/4 + 51/16). T(n,3) = 5*(5^n/320 + 45*n/16 + 3*n^2/8 + 819/64). - R. J. Mathar, Aug 09 2013
EXAMPLE
Example:
1,
5, 5,
25, 10, 25,
125, 35, 35, 125,
625, 160, 70, 160, 625,
3125, 785, 230, 230, 785, 3125,
15625, 3910, 1015, 460, 1015, 3910, 15625,
78125, 19535, 4925, 1475, 1475, 4925, 19535, 78125,
390625, 97660, 24460, 6400, 2950, 6400, 24460, 97660, 390625
MAPLE
A227076 := proc(n, k)
if k = 0 or k = n then
5^n ;
elif k < 0 or k > n then
0;
else
procname(n-1, k)+procname(n-1, k-1) ;
end if;
end proc: # R. J. Mathar, Aug 09 2013
MATHEMATICA
t = {}; Do[r = {}; Do[If[k == 0 || k == n, m = 5^n, m = t[[n, k]] + t[[n, k + 1]]]; r = AppendTo[r, m], {k, 0, n}]; AppendTo[t, r], {n, 0, 10}]; t = Flatten[t]
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
T. D. Noe, Aug 06 2013
STATUS
approved