OFFSET
0,2
COMMENTS
All rows except the zeroth are divisible by 5. Is there a closed-form formula for these numbers, as there is for binomial coefficients?
LINKS
T. D. Noe, Rows n = 0..50 of triangle, flattened
FORMULA
From R. J. Mathar, Aug 09 2013: (Start)
T(n,0) = 5^n.
T(n,1) = 5*A047850(n-1).
T(n,2) = 5*(5^n/80 + 3*n/4 + 51/16).
T(n,3) = 5*(5^n/320 + 45*n/16 + 3*n^2/8 + 819/64). (End)
Sum_{k=0..n} (-1)^k*T(n, k) = 20*(1+(-1)^n)*A009969(floor((n-1)/2)) - (3/5)*[n = 0]. - G. C. Greubel, Jan 10 2025
EXAMPLE
Triangle begins as:
1;
5, 5;
25, 10, 25;
125, 35, 35, 125;
625, 160, 70, 160, 625;
3125, 785, 230, 230, 785, 3125;
15625, 3910, 1015, 460, 1015, 3910, 15625;
78125, 19535, 4925, 1475, 1475, 4925, 19535, 78125;
390625, 97660, 24460, 6400, 2950, 6400, 24460, 97660, 390625;
MAPLE
A227076 := proc(n, k)
if k = 0 or k = n then
5^n ;
elif k < 0 or k > n then
0;
else
procname(n-1, k)+procname(n-1, k-1) ;
end if;
end proc: # R. J. Mathar, Aug 09 2013
MATHEMATICA
t = {}; Do[r = {}; Do[If[k == 0 || k == n, m = 5^n, m = t[[n, k]] + t[[n, k + 1]]]; r = AppendTo[r, m], {k, 0, n}]; AppendTo[t, r], {n, 0, 10}]; t = Flatten[t]
PROG
(Magma)
function T(n, k) // T = A227076
if k eq 0 or k eq n then return 5^n;
else return T(n-1, k) + T(n-1, k-1);
end if;
end function;
[T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 10 2025
(Python)
from sage.all import *
@CachedFunction
def T(n, k): # T = A227076
if k==0 or k==n: return pow(5, n)
else: return T(n-1, k) + T(n-1, k-1)
print(flatten([[T(n, k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Jan 10 2025
CROSSREFS
Cf. A000351.
KEYWORD
AUTHOR
T. D. Noe, Aug 06 2013
STATUS
approved