|
|
|
|
1, 5, 5, 25, 5, 25, 25, 125, 5, 25, 25, 125, 25, 125, 125, 625, 5, 25, 25, 125, 25, 125, 125, 625, 25, 125, 125, 625, 125, 625, 625, 3125, 5, 25, 25, 125, 25, 125, 125, 625, 25, 125, 125, 625, 125, 625, 625, 3125, 25, 125, 125, 625, 125, 625, 625, 3125, 125, 625, 625, 3125, 625, 3125, 3125, 15625
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Also, a row of the square array A256140.
It appears that when A151780 is regarded as a triangle in which the row lengths are the powers of 2, this is what the rows converge to.
|
|
LINKS
|
Table of n, a(n) for n=0..63.
|
|
FORMULA
|
a(n) = A000351(A000120(n)). - Michel Marcus, Mar 21 2015
G.f.: Product_{k>=0} (1 + 5*x^(2^k)). - Ilya Gutkovskiy, Feb 28 2017
|
|
EXAMPLE
|
Also, written as an irregular triangle in which the row lengths are the terms of A011782, the sequence begins:
1;
5;
5, 25;
5, 25, 25, 125;
5, 25, 25, 125, 25, 125, 125, 625;
...
|
|
MATHEMATICA
|
5^# & /@ Nest[Join[#, # + 1] &, {0}, 6] (* Michael De Vlieger, Mar 20 2015, after IWABUCHI Yu(u)ki at a000120 *)
|
|
PROG
|
(PARI) a(n) = 5^hammingweight(n); \\ Michel Marcus, Mar 21 2015
|
|
CROSSREFS
|
Cf. A000120, A001316, A048883, A102376, A130667, A151780, A256140, A256141.
Sequence in context: A165826 A256693 A255458 * A227076 A223186 A071340
Adjacent sequences: A256132 A256133 A256134 * A256136 A256137 A256138
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Omar E. Pol, Mar 19 2015
|
|
EXTENSIONS
|
More terms from Michael De Vlieger, Mar 20 2015
|
|
STATUS
|
approved
|
|
|
|