login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A256137 a(2) = 1; a(3) = 4; for n >= 4, a(n) = 2 + Sum_{i=4..n} d(i), where d(i) = i for even i, d(i) = i-3 for odd i. 1
1, 4, 6, 8, 14, 18, 26, 32, 42, 50, 62, 72, 86, 98, 114, 128, 146, 162, 182, 200, 222, 242, 266, 288, 314, 338, 366, 392, 422, 450, 482, 512, 546, 578, 614, 648, 686, 722, 762, 800, 842, 882, 926, 968, 1014, 1058, 1106, 1152, 1202, 1250, 1302, 1352, 1406 (list; graph; refs; listen; history; text; internal format)
OFFSET
2,2
LINKS
FORMULA
a(2) = 1; a(3) = 4; for n >= 4, a(n) = 2 + Sum_{i=4..n} d(i), where d(i) = i for even i, d(i) = i-3 for odd i.
From Colin Barker, Jul 12 2015 and Aug 20 2015: (Start)
a(n) = (5+3*(-1)^n-4*n+2*n^2)/4 for n>3.
a(n) = (n^2-2*n+4)/2 for n even and n>3.
a(n) = (n^2-2*n+1)/2 for n odd and n>3.
a(n) = 2*a(n-1)-2*a(n-3)+a(n-4) for n>6.
G.f.: x^2*(2*x^5-5*x^4+2*x^3+2*x^2-2*x-1) / ((x-1)^3*(x+1)).
(End)
MATHEMATICA
Prepend[Table[2 + Sum[If[EvenQ@ i, i, i - 3], {i, 3, n}], {n, 3, 48}], 1] (* Michael De Vlieger, Jul 12 2015 *)
Join[{1, 2, 6, 8, 14, 18}, LinearRecurrence[{2, 0, -2, 1}, {26, 32, 42, 50}, 50]] (* Vincenzo Librandi, Jul 16 2015 *)
PROG
(PARI) a=4; print1("1, ", a, ", "); for (n=4, 100, if (Mod(n, 2)==0, d=n, d=n-3); a=a+d; print1(a, ", "))
(PARI) Vec(x^2*(2*x^5-5*x^4+2*x^3+2*x^2-2*x-1)/((x-1)^3*(x+1)) + O(x^100)) \\ Colin Barker, Jul 12 2015 and Aug 20 2015
(PARI) a(n)=if(n<3, 1, (n^2-2*n)\2+2-(n%2)) \\ Charles R Greathouse IV, Jul 17 2015
CROSSREFS
Sequence in context: A110974 A173180 A200077 * A116897 A293763 A246324
KEYWORD
nonn,easy
AUTHOR
Kival Ngaokrajang, Jul 11 2015
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 02:18 EST 2023. Contains 367681 sequences. (Running on oeis4.)