OFFSET
1,2
COMMENTS
The exponents of the corresponding powers of 2 are 3, 4, 5, 7, 15 (see Ramanujan). - N. J. A. Sloane, Jun 01 2014
The terms lead to identities resembling Machin's Pi/4 = arctan(1/1) = 4*arctan(1/5) - arctan(1/239), for example, arctan(sqrt(7)/1) = 5*arctan(sqrt(7)/11) + 2*arctan(sqrt(7)/181), which can also be expressed as arcsin(sqrt(7/2^3)) = 5*arcsin(sqrt(7/2^7)) + 2*arcsin(sqrt(7/2^15)) (cf. A168229). - Joerg Arndt, Nov 09 2012
REFERENCES
J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 181, p. 56, Ellipses, Paris 2008.
L. J. Mordell, Diophantine Equations, Academic Press, NY, 1969, p. 205.
S. Ramanujan, Collected Papers, Ed. G. H. Hardy et al., Cambridge 1927; Chelsea, NY, 1962. See Question 464, p. 327. - N. J. A. Sloane, Jun 01 2014
LINKS
Spencer De Chenne, The Ramanujan-Nagell Theorem: Understanding the Proof
Eric Weisstein's World of Mathematics, Ramanujan's Square Equation
Wikipedia, Lucas Sequence
MATHEMATICA
ok[n_] := Reduce[k>0 && n^2 + 7 == 2^k, k, Integers] =!= False; Select[Range[1000], ok] (* Jean-François Alcover, Sep 21 2011 *)
PROG
(PARI) [x | n<-[0..99], issquare(2^n-7, &x)] \\ M. F. Hasler, Mar 11 2024
CROSSREFS
KEYWORD
nonn,fini,full
AUTHOR
STATUS
approved