OFFSET
1,2
COMMENTS
This constant is the least x > 0 satisfying cos(4*x) = (cos x)^2. - Clark Kimberling, Oct 15 2011
An identity resembling Machin's Pi/4 = arctan(1/1) = 4*arctan(1/5) - arctan(1/239) is arctan(sqrt(7)/1) = 5*arctan(sqrt(7)/11) + 2*arctan(sqrt(7)/181), which can also be expressed as arcsin(sqrt(7/2^3)) = 5*arcsin(sqrt(7/2^7)) + 2*arcsin(sqrt(7/2^15)) (cf. A038198). - Joerg Arndt, Nov 09 2012
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..5000
Kunle Adegoke, Infinite arctangent sums involving Fibonacci and Lucas numbers, arXiv:1603.08097 [math.NT], 2016.
Djurdje Cvijovic, A dilogarithmic integral arising in quantum field theory, arXiv:0911.3773 [math.CA], 2009.
FORMULA
Smallest positive solution of cos(x) + sqrt(1 + cos^2(x)) = sqrt(2). - Geoffrey Caveney, Apr 24 2014
Equals Sum_{k >= 1} atan(5*sqrt(7)*F(4k-1)/L(2*(4k-1))) where L=A000032 and F=A000045. See also A033891. - Michel Marcus, Mar 29 2016
Equals arccos(1/(2*sqrt(2))). - Amiram Eldar, May 28 2021
EXAMPLE
arctan(sqrt(7)) = 1.209429202888189... .
MATHEMATICA
RealDigits[ArcTan[Sqrt[7]], 10, 50][[1]] (* G. C. Greubel, Nov 18 2017 *)
PROG
(PARI) atan(sqrt(7)) \\ Michel Marcus, Mar 11 2013
(Magma) [Arctan(Sqrt(7))]; // G. C. Greubel, Nov 18 2017
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
Jonathan Vos Post, Nov 20 2009
EXTENSIONS
More digits from R. J. Mathar, Dec 06 2009
STATUS
approved