login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107920
Lucas and Lehmer numbers with parameters (1 +- sqrt(-7))/2.
30
0, 1, 1, -1, -3, -1, 5, 7, -3, -17, -11, 23, 45, -1, -91, -89, 93, 271, 85, -457, -627, 287, 1541, 967, -2115, -4049, 181, 8279, 7917, -8641, -24475, -7193, 41757, 56143, -27371, -139657, -84915, 194399, 364229, -24569, -753027, -703889, 802165, 2209943, 605613, -3814273
OFFSET
0,5
COMMENTS
The sequences A001607, A077020, A107920, A167433, A169998 are all essentially the same except for signs.
This is an example of a sequence of Lehmer numbers. In this case, the two parameters, alpha and beta, are (1 +- i*sqrt(7))/2. Bilu, Hanrot, Voutier and Mignotte show that all terms of a Lehmer sequence a(n) have a primitive factor for n > 30. Note that for this sequence, a(30) = 24475 = 5*5*11*89 has no primitive factors. - T. D. Noe, Oct 29 2003
Row sums of Riordan array (1/(1+2x^2), x/(1+2x^2)). - Paul Barry, Sep 10 2005
Pisano period lengths: 1, 1, 8, 2, 24, 8, 21, 2, 24, 24, 10, 8, 168, 21, 24, 4, 144, 24, 360, 24, ... - R. J. Mathar, Aug 10 2012
This is the Lucas Sequence U_n(P, Q) = U_n(1, 2). V_n(1, 2) = A002249(n). - Raphie Frank, Dec 25 2013
Note that (A002249(n)/2)^2 + 7*(a(n)/2)^2 = 2^n for all n in N. This is a specific case of the Lucas sequence identity (V_n/2)^2 - D*(U_n/2)^2 = Q^n where V_n = (a^n + b^n), U_n = (a^n - b^n)/(a - b), Q = (a*b) = 2 and D = (a - b)^2 = -7; a = (1 + sqrt(-7))/2 and b = (1 - sqrt(-7))/2. - Raphie Frank, Nov 26 2015
For the special case where |a(n)| = 1, true for n if and only if n is in {1, 2, 3, 5, 13} = {A215795(n) + 1} = {A060728(n) - 2}, then, additionally, by the Lucas sequence identity (U_2n = U_n*V_n), we have (a(2n)/2)^2 + 7*(a(n)/2)^2 = 2^n. - Raphie Frank, Nov 26 2015
LINKS
Christian Ballot, Lucasnomial Fuss-Catalan Numbers and Related Divisibility Questions, J. Int. Seq., Vol. 21 (2018), Article 18.6.5.
Paul Barry, On a Central Transform of Integer Sequences, arXiv:2004.04577 [math.CO], 2020.
F. Beukers, The multiplicity of binary recurrences, Compositio Mathematica, Tome 40 (1980) no. 2 , p. 251-267. See Theorem 2 p. 259.
Y. Bilu, G. Hanrot, P. M. Voutier and M. Mignotte, Existence of primitive divisors of Lucas and Lehmer numbers, [Research Report] RR-3792, INRIA. 1999, pp.41, HAL Id : inria-00072867.
M. Mignotte, Propriétés arithmétiques des suites récurrentes, Besançon, 1988-1989, see p. 14. In French.
Ronald Orozco López, Deformed Differential Calculus on Generalized Fibonacci Polynomials, arXiv:2211.04450 [math.CO], 2022.
Eric Weisstein's World of Mathematics, Lehmer Number
Wikipedia, Lucas Sequence
FORMULA
G.f.: x / (1 - x + 2*x^2).
a(n) = a(n-1) - 2*a(n-2).
a(n) = -(-1)^n*A001607(n).
From Paul Barry, Sep 10 2005: (Start)
a(n+1) = Sum_{k=0..n} C((n+k)/2, k)*(-2)^((n-k)/2)*(1+(-1)^(n-k))/2.
a(n+1) = Sum_{k=0..floor(n/2)} C(n-k, k)*(-2)^k. (End)
a(n+1) = Sum_{k=0..n} A109466(n,k)*2^(n-k). - Philippe Deléham, Oct 26 2008
a(n) = ((1 - i*sqrt(7))^n - (1 + i*sqrt(7))^n)*i/(2^n*sqrt(7)), where i=sqrt(-1). - Bruno Berselli, Jul 01 2011
(a(2*(A060728(n)) - 4))^2 = (A002249(A060728(n) - 2))^2 = 2^(A060728(n)) - 7 = A227078(n), the Ramanujan-Nagell squares. - Raphie Frank, Dec 25 2013
a(n) = -a(-n) * 2^n for all n in Z. - Michael Somos, Jan 19 2017
G.f.: x / (1 - x / (1 + 2*x / (1 - 2*x))). - Michael Somos, Jan 19 2017
a(n) = S(n-1, 1/sqrt(2))*(sqrt(2))^(n-1), n >= 0, with the Chebyshev S polynomials (coefficients in A049310), and S(-1, x) = 0. - Wolfdieter Lang, Feb 22 2018
a(n) = hypergeom([1-n/2, (1-n)/2], [1-n], 8) for n >= 2. - Peter Luschny, Feb 23 2018
EXAMPLE
G.f. = x + x^2 - x^3 - 3*x^4 - x^5 + 5*x^6 + 7*x^7 - 3*x^8 - 17*x^9 - 11*x^10 + ...
MAPLE
a:= n-> (Matrix([[1, 1], [ -2, 0]])^n)[1, 2]: seq(a(n), n=0..45); # Alois P. Heinz, Sep 03 2008
MATHEMATICA
LinearRecurrence[{1, -2}, {0, 1}, 50] (* Vincenzo Librandi, Nov 27 2015 *)
a[ n_] := Im[ ((1 + Sqrt[-7]) / 2)^n // FullSimplify] 2 / Sqrt[7]; (* Michael Somos, Jan 19 2017 *)
a[n_] := If[n < 2, n, Hypergeometric2F1[1 - n/2, (1 - n)/2, 1 - n, 8]];
Table[a[n], {n, 0, 45}] (* Peter Luschny, Feb 23 2018 *)
PROG
(PARI) {a(n) = imag(quadgen(-7)^n)};
(Sage) [lucas_number1(n, 1, +2) for n in range(0, 46)] # Zerinvary Lajos, Apr 22 2009
(Magma) [0] cat [n le 2 select 1 else Self(n-1)-2*Self(n-2): n in [1..45]]; // Vincenzo Librandi, Nov 27 2015
(PARI) x='x+O('x^100); concat(0, Vec(x/(1-x+2*x^2))) \\ Altug Alkan, Dec 04 2015
KEYWORD
sign,easy
AUTHOR
Michael Somos, May 28 2005
STATUS
approved