login
A169998
a(0)=1, a(1)=1; thereafter a(n) = -a(n-1) - 2*a(n-2).
5
1, 1, -3, 1, 5, -7, -3, 17, -11, -23, 45, 1, -91, 89, 93, -271, 85, 457, -627, -287, 1541, -967, -2115, 4049, 181, -8279, 7917, 8641, -24475, 7193, 41757, -56143, -27371, 139657, -84915, -194399, 364229, 24569, -753027, 703889, 802165, -2209943, 605613, 3814273, -5025499, -2603047
OFFSET
0,3
COMMENTS
Cassels, following Nagell, shows that a(n) = +- 1 only for n = 1, 2, 3, 5, 13.
The sequences A001607, A077020, A107920, A167433, A169998 are all essentially the same except for signs.
REFERENCES
J. W. S. Cassels, Local Fields, Cambridge, 1986, see p. 67.
LINKS
F. Beukers, The multiplicity of binary recurrences, Compositio Mathematica, Tome 40 (1980) no. 2 , p. 251-267. See Theorem 2 p. 259.
M. Mignotte, Propriétés arithmétiques des suites récurrentes, Besançon, 1988-1989, see p. 14. In French.
FORMULA
G.f.: ( 1+2*x ) / ( 1+x+2*x^2 ). - R. J. Mathar, Jul 14 2011
MAPLE
f:=proc(n) option remember; if n <= 1 then 1 else -f(n-1)-2*f(n-2); fi; end;
MATHEMATICA
LinearRecurrence[{-1, -2}, {1, 1}, 46] (* Jean-François Alcover, Feb 23 2024 *)
PROG
(PARI) a(n)=([0, 1; -2, -1]^n*[1; 1])[1, 1] \\ Charles R Greathouse IV, Jun 11 2015
CROSSREFS
Sequence in context: A167433 A077020 A107920 * A326729 A171998 A343615
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Aug 29 2010
STATUS
approved