OFFSET
1,1
COMMENTS
See A038198 for corresponding x. - Lekraj Beedassy, Sep 07 2004
Also numbers such that 2^(n-3)-1 is in A000217, i.e., a triangular number. - M. F. Hasler, Feb 23 2009
With respect to M. F. Hasler's comment above, all terms 2^(n-3) - 1 are known as the Ramanujan-Nagell triangular numbers (A076046). - Raphie Frank, Mar 31 2013
Interestingly enough, all the solutions correspond to noncomposite x, i.e., x = 1 for the first term, and primes 3, 5, 11, 181 for the following terms. - M. F. Hasler, Mar 11 2024
REFERENCES
J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 181, p. 56, Ellipses, Paris 2008.
J. Roberts, Lure of the Integers. pp. 90-91, MAA 1992.
Ian Stewart & David Tall, Algebraic Number Theory and Fermat's Last Theorem, 3rd Ed. Natick, Massachusetts (2002): 96-98.
LINKS
T. Skolem, S. Chowla and D. J. Lewis, The Diophantine Equation 2^(n+2)-7=x^2 and Related Problems. Proc. Amer. Math. Soc. 10 (1959) 663-669. [M. F. Hasler, Feb 23 2009]
M. Beeler, R. W. Gosper and R. Schroeppel, HAKMEM: item 31: A Ramanujan Problem (R. Schroeppel)
Curtis Bright, Solving Ramanujan's Square Equation Computationally
Spencer De Chenne, The Ramanujan-Nagell Theorem: Understanding the Proof
A. Engel, Problem-Solving Strategies. p. 126.
Gerry Myerson, Bibliography
T. Nagell, The Diophantine equation x^2 + 7 = 2^n, Ark. Mat. 4 (1961), no. 2-3, 185-187.
S. Ramanujan, Journal of the Indian Mathematical Society, Question 464(v,120)
Eric Weisstein's World of Mathematics, Ramanujan's Square Equation
Eric Weisstein's World of Mathematics, Diophantine Equation 2nd Powers
Wikipedia, Carmichael's Theorem
Wikipedia, Diophantine equation
FORMULA
EXAMPLE
The fifth and ultimate solution to Ramanujan's equation is obtained for the 15th power of 2, so that we have x^2 + 7 = 2^15 yielding x = 181.
MATHEMATICA
ramaNagell[n_] := Reduce[x^2 + 7 == 2^n, x, Integers] =!= False; Select[ Range[100], ramaNagell] (* Jean-François Alcover, Sep 21 2011 *)
PROG
(Magma) [n: n in [0..100] | IsSquare(2^n-7)]; // Vincenzo Librandi, Jan 07 2014
(PARI) is(n)=issquare(2^n-7) \\ Anders Hellström, Dec 12 2015
CROSSREFS
KEYWORD
fini,full,nonn
AUTHOR
Lekraj Beedassy, Apr 25 2001
EXTENSIONS
Added keyword "full", M. F. Hasler, Feb 23 2009
STATUS
approved