login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060731
a(n) = a(n-1) + a(n - 1 minus the number of terms of a(k) == (mod 4) so far).
0
1, 2, 3, 4, 7, 11, 14, 25, 36, 50, 64, 89, 125, 175, 225, 314, 378, 467, 592, 817, 992, 1306, 1684, 2062, 2529, 2996, 3988, 4580, 5572, 6878, 9407, 10399, 12928, 15457, 19445, 21507, 25495, 31067, 35647, 40227, 49634, 60033, 66911, 77310, 92767
OFFSET
1,2
EXAMPLE
a(5) = a(4) + a(4 - the number of terms congruent to 1 (mod 4) so far) = a(4) + a(4-1) = 4 + 3 = 7.
MATHEMATICA
m[ 1 ] = 1; m[ 2 ] = 2; m[ 3 ] = 3; a[ 4 ] = 4; m[ n_Integer ] := m[ n ] = Block[ {a = b = c = d = 0}, Do[ Switch[ Mod[ m[ k ], 4 ], 0, a++, 1, b++, 2, c++, 3, d++ ], {k, 1, n - 1} ]; Switch[ Mod[ n, 4 ], 0, m[ n - 1 ] + m[ n - 1 - a ], 1, m[ n - 1 ] + m[ n - 1 - b ], 2, m[ n - 1 ] + m[ n - 1 - c ], 3, m[ n - 1 ] + m[ n - 1 - d ] ] ]; Table[ m[ n ], {n, 1, 50} ]
CROSSREFS
Sequence in context: A171027 A348792 A064933 * A238492 A140827 A125621
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Apr 22 2001
STATUS
approved