login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = a(n-1) + a(n - 1 minus the number of terms of a(k) == (mod 4) so far).
0

%I #2 Mar 30 2012 17:30:31

%S 1,2,3,4,7,11,14,25,36,50,64,89,125,175,225,314,378,467,592,817,992,

%T 1306,1684,2062,2529,2996,3988,4580,5572,6878,9407,10399,12928,15457,

%U 19445,21507,25495,31067,35647,40227,49634,60033,66911,77310,92767

%N a(n) = a(n-1) + a(n - 1 minus the number of terms of a(k) == (mod 4) so far).

%e a(5) = a(4) + a(4 - the number of terms congruent to 1 (mod 4) so far) = a(4) + a(4-1) = 4 + 3 = 7.

%t m[ 1 ] = 1; m[ 2 ] = 2; m[ 3 ] = 3; a[ 4 ] = 4; m[ n_Integer ] := m[ n ] = Block[ {a = b = c = d = 0}, Do[ Switch[ Mod[ m[ k ], 4 ], 0, a++, 1, b++, 2, c++, 3, d++ ], {k, 1, n - 1} ]; Switch[ Mod[ n, 4 ], 0, m[ n - 1 ] + m[ n - 1 - a ], 1, m[ n - 1 ] + m[ n - 1 - b ], 2, m[ n - 1 ] + m[ n - 1 - c ], 3, m[ n - 1 ] + m[ n - 1 - d ] ] ]; Table[ m[ n ], {n, 1, 50} ]

%K nonn

%O 1,2

%A _Robert G. Wilson v_, Apr 22 2001