login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A140827
Interleave denominators and numerators of convergents to sqrt(3).
3
1, 1, 2, 3, 4, 7, 11, 15, 26, 41, 56, 97, 153, 209, 362, 571, 780, 1351, 2131, 2911, 5042, 7953, 10864, 18817, 29681, 40545, 70226, 110771, 151316, 262087, 413403, 564719, 978122, 1542841, 2107560, 3650401, 5757961, 7865521, 13623482, 21489003, 29354524, 50843527, 80198051, 109552575
OFFSET
0,3
COMMENTS
Coefficients of (1+r)^m modulo r^4-r^2+1.
The first few principal and intermediate convergents to 3^(1/2) are 1/1, 2/1, 3/2, 5/3, 7/4, 12/7; essentially, numerators=A143642 and denominators=A140827. - Clark Kimberling, Aug 27 2008
From Michel Dekking, Mar 11 2020: (Start)
This sequence can be seen as a generalization of the Fibonacci numbers A000045. The Zeckendorf expansion of a natural number uses the Fibonacci numbers as constituents. The Zeckendorf expansion is called a 2-bin decomposition in the paper by Demontigny et al.
The numbers a(n) are the constituents of the 3-bin decomposition of a natural number. See Example 4.2 and Proposition 4.3 in the Demontigny et al. paper.
Any natural number N can be uniquely expanded as
N = Sum_{i=0..k} d(i)*a(i)
under the requirement d(i)d(i+1) = 0, and d(3i)d(3i+2) = 0 for all i.
Here k is the largest integer such that a(k) < N+1.
(End)
REFERENCES
Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.
LINKS
Demontigny et al., Generalizing Zeckendorf's Theorem to f-decompositions, Journal of Number Theory 141, 135-158 (2014).
Peter H. van der Kamp, Global classification of two-component approximately integrable evolution equations, arXiv:0710.2233 [nlin.SI], 2007-2008.
Clark Kimberling, Best lower and upper approximates to irrational numbers, Elemente der Mathematik, 52 (1997), 122-126.
FORMULA
a(n) = 4*a(n-3) - a(n-6).
G.f.: ( 1+x+2*x^2-x^3-x^5 ) / ( 1-4*x^3+x^6 ).
a(n) = a(n-1)+a(n-3) if 3 |(n-1), else a(n)=a(n-1)+a(n-2), with n>1.
a(3*n-1) = A001075(n); a(3*n) = A001835(n-1); a(3*n+1) = A001353(n+1).
a(n)^2 = 1+3*a(n-1)^2 if n==2 (mod 3).
EXAMPLE
(1+r)^(2+12*q)=(-1)^q*(a(1+18*q)*(1+r^2)+a(2+18*q)*r).
Here we write N = [d(k)d(k-1)...d(0)] for the 3-bin expansion of N.
0=[0], 1 =[1], 2=[10], 3=[100], 4=[1000], 5=[1001], 6=[1010], 7=[10000], 8=[10001], 9=[10010], 10=[10100], 11=[100000]. - Michel Dekking, Mar 11 2020
MAPLE
N:=100: a[0]:=1: a[1]:=1: for i from 2 to N do if i mod 3 = 1 then a[i]:=a[i-1]+a[i-3] else a[i]:=a[i-1]+a[i-2] fi od:
MATHEMATICA
idnc[n_]:=Module[{cvrgts=Convergents[Sqrt[3], n], num, den}, num=Take[ Numerator[ cvrgts], {2, -1, 2}]; den=Denominator[cvrgts]; Riffle[den, num, 3]]; idnc[30] (* Harvey P. Dale, Mar 17 2012 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Peter H van der Kamp, Jul 18 2008, Jul 22 2008
STATUS
approved