OFFSET
0,3
COMMENTS
Coefficients of (1+r)^m modulo r^4-r^2+1.
The first few principal and intermediate convergents to 3^(1/2) are 1/1, 2/1, 3/2, 5/3, 7/4, 12/7; essentially, numerators=A143642 and denominators=A140827. - Clark Kimberling, Aug 27 2008
From Michel Dekking, Mar 11 2020: (Start)
This sequence can be seen as a generalization of the Fibonacci numbers A000045. The Zeckendorf expansion of a natural number uses the Fibonacci numbers as constituents. The Zeckendorf expansion is called a 2-bin decomposition in the paper by Demontigny et al.
The numbers a(n) are the constituents of the 3-bin decomposition of a natural number. See Example 4.2 and Proposition 4.3 in the Demontigny et al. paper.
Any natural number N can be uniquely expanded as
N = Sum_{i=0..k} d(i)*a(i)
under the requirement d(i)d(i+1) = 0, and d(3i)d(3i+2) = 0 for all i.
Here k is the largest integer such that a(k) < N+1.
(End)
REFERENCES
Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.
LINKS
Harvey P. Dale, Table of n, a(n) for n = 0..1000
Demontigny et al., Generalizing Zeckendorf's Theorem to f-decompositions, Journal of Number Theory 141, 135-158 (2014).
Peter H. van der Kamp, Global classification of two-component approximately integrable evolution equations, arXiv:0710.2233 [nlin.SI], 2007-2008.
Clark Kimberling, Best lower and upper approximates to irrational numbers, Elemente der Mathematik, 52 (1997), 122-126.
Index entries for linear recurrences with constant coefficients, signature (0,0,4,0,0,-1).
FORMULA
EXAMPLE
(1+r)^(2+12*q)=(-1)^q*(a(1+18*q)*(1+r^2)+a(2+18*q)*r).
Here we write N = [d(k)d(k-1)...d(0)] for the 3-bin expansion of N.
0=[0], 1 =[1], 2=[10], 3=[100], 4=[1000], 5=[1001], 6=[1010], 7=[10000], 8=[10001], 9=[10010], 10=[10100], 11=[100000]. - Michel Dekking, Mar 11 2020
MAPLE
N:=100: a[0]:=1: a[1]:=1: for i from 2 to N do if i mod 3 = 1 then a[i]:=a[i-1]+a[i-3] else a[i]:=a[i-1]+a[i-2] fi od:
MATHEMATICA
idnc[n_]:=Module[{cvrgts=Convergents[Sqrt[3], n], num, den}, num=Take[ Numerator[ cvrgts], {2, -1, 2}]; den=Denominator[cvrgts]; Riffle[den, num, 3]]; idnc[30] (* Harvey P. Dale, Mar 17 2012 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Peter H van der Kamp, Jul 18 2008, Jul 22 2008
STATUS
approved