login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A140829
a(0)=1; for n >= 1, a(n) = ceiling(Fibonacci(n)/a(n-1)).
1
1, 1, 1, 2, 2, 3, 3, 5, 5, 7, 8, 12, 12, 20, 19, 33, 30, 54, 48, 88, 77, 143, 124, 232, 200, 376, 323, 609, 522, 986, 844, 1596, 1365, 2583, 2208, 4180, 3572, 6764, 5779, 10945, 9350, 17710, 15128, 28656, 24477, 46367, 39604, 75024, 64080, 121392, 103683
OFFSET
0,4
FORMULA
Conjectures from Colin Barker, Mar 08 2019: (Start)
G.f.: (1 + x + x^3)*(1 + x - x^9) / ((1 + x)*(1 - x^2 - x^4)).
a(n) = -a(n-1) + a(n-2) + a(n-3) + a(n-4) + a(n-5) for n>12.
(End)
MAPLE
with(combinat): a:=proc(n) if n=0 then 1 else ceil(fibonacci(n)/a(n-1)) end if end proc: seq(a(n), n=0..50); # Emeric Deutsch, Aug 09 2008
MATHEMATICA
RecurrenceTable[{a[0]==1, a[n]==Ceiling[Fibonacci[n]/a[n-1]]}, a, {n, 50}] (* Harvey P. Dale, Dec 13 2013 *)
CROSSREFS
Cf. A140828 (similar sequence).
Sequence in context: A008484 A274146 A027189 * A346523 A184324 A274168
KEYWORD
nonn
AUTHOR
Leroy Quet, Jul 18 2008
EXTENSIONS
More terms from Emeric Deutsch, Aug 09 2008
STATUS
approved