The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A008484 Number of partitions of n into parts >= 4. 32
1, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 5, 5, 7, 8, 11, 12, 16, 18, 24, 27, 34, 39, 50, 57, 70, 81, 100, 115, 140, 161, 195, 225, 269, 311, 371, 427, 505, 583, 688, 791, 928, 1067, 1248, 1434, 1668, 1914, 2223, 2546, 2945, 3370, 3889, 4443, 5113, 5834, 6698 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,9
COMMENTS
a(n) is also the number of not necessarily connected 2-regular graphs on n-vertices with girth at least 4 (all such graphs are simple). The integer i corresponds to the i-cycle; addition of integers corresponds to disconnected union of cycles. - Jason Kimberley, Jan 2011 and Feb 2012
By removing a single part of size 4, an A026797 partition of n becomes an A008484 partition of n - 4. Hence this sequence is essentially the same as A026797. - Jason Kimberley, Feb 2012
Number of partitions of n+3 such that 3*(number of parts) is a part. - Clark Kimberling, Feb 27 2014
Let c(n) be the number of partitions of n such that both (number of parts) and 2*(number of parts) are parts; then c(n) = a(n-6) for n >= 6 and c(n) = 0 for n < 6. - Clark Kimberling, Mar 01 2014
a(n) is also the number of partitions of n for which three times the number of ones is twice the number of parts (conjectured). - George Beck, Aug 19 2017
Proof: Above definition is equivalent to 2 out of 3 parts being equal to 1. Arrange in triples 1, 1, >= 2, etc. Sum of each triple corresponds to sequence definition. - Martin Fuller, Aug 21 2023
LINKS
Kevin Beanland and Hung Viet Chu, On Schreier-type Sets, Partitions, and Compositions, arXiv:2311.01926 [math.CO], 2023.
FORMULA
G.f.: 1 / Product_{m>=4} (1 - x^m).
Euler transformation of A185114. - Jason Kimberley, Jan 30 2011
Given by p(n) - p(n-1) - p(n-2) + p(n-4) + p(n-5) - p(n-6) where p(n) = A000041(n). Generally, 1/Product_{i>=K} (1 - x^i) is given by p({A}), where {A} is defined over the coefficients of Product_{i=1..K-1} (1 - x^i). In this case, K=4, so (1-x)(1-x^2)(1-x^3) = 1 - x - x^2 + x^4 + x^5 - x^6, defining {A} as above. G.f.: 1 + Sum_{i>=1} (x^4i)/Product_{j=1..i}(1 - x^j). - Jon Perry, Jul 04 2004
a(n) ~ exp(Pi*sqrt(2*n/3)) * Pi^3 / (12*sqrt(2)*n^(5/2)). - Vaclav Kotesovec, Jun 02 2018
G.f.: exp(Sum_{k>=1} x^(4*k)/(k*(1 - x^k))). - Ilya Gutkovskiy, Aug 21 2018
MAPLE
series(1/product((1-x^i), i=4..65), x, 60); # end of program
ZL := [ B, {B=Set(Set(Z, card>=4))}, unlabeled ]: seq(combstruct[count](ZL, size=n), n=0..60); # Zerinvary Lajos, Mar 13 2007
MATHEMATICA
f[1, 1]=1; f[n_, k_]:= f[n, k] = If[n<0, 0, If[k>n, 0, If[k==n, 1, f[n, k +1] + f[n-k, k]]]]; Table[f[n, 4], {n, 60}] (* end of program *)
Drop[Table[Count[IntegerPartitions[n], p_ /; MemberQ[p, 3*Length[p]]], {n, 60}], 2] (* Clark Kimberling, Feb 27 2014 *)
Table[Count[IntegerPartitions[n],
p_ /; 3 Count[p, 1] == 2 Length[p]], {n, 0, 60}] (* George Beck Aug 19 2017 *)
CoefficientList[Series[1/QPochhammer[x^4, x], {x, 0, 60}], x] (* G. C. Greubel, Nov 03 2019 *)
PROG
(Magma) a:= func< n | NumberOfPartitions(n)-NumberOfPartitions(n-1)-NumberOfPartitions(n-2)+ NumberOfPartitions(n-4)+NumberOfPartitions(n-5)- NumberOfPartitions(n-6) >; [1, 0, 0, 0, 1, 1, 1] cat [ a(n) : n in [7..60]]; // Vincenzo Librandi, Aug 20 2017
(Magma) R<x>:=PowerSeriesRing(Integers(), 60); Coefficients(R!( 1/(&*[1-x^(m+4): m in [0..70]]) )); // G. C. Greubel, Nov 03 2019
(PARI) my(x='x+O('x^60)); Vec(1/prod(m=0, 70, 1-x^(m+4))) \\ G. C. Greubel, Nov 03 2019
(Sage)
def A008484_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 1/product((1-x^(m+4)) for m in (0..70)) ).list()
A008484_list(60) # G. C. Greubel, Nov 03 2019
CROSSREFS
2-regular graphs with girth at least 4: A185114 (connected), A185224 (disconnected), this sequence (not necessarily connected).
Not necessarily connected 2-regular graphs with girth at least g [partitions into parts >= g]: A026807 (triangle); chosen g: A000041 (g=1 -- multigraphs with loops allowed), A002865 (g=2 -- multigraphs with loops forbidden), A008483 (g=3), this sequence (g=4), A185325(g=5), A185326 (g=6), A185327 (g=7), A185328 (g=8), A185329 (g=9).
Not necessarily connected 2-regular graphs with girth exactly g [partitions with smallest part g]: A026794 (triangle); chosen g: A002865 (g=2), A026796 (g=3), A026797 (g=4), A026798 (g=5), A026799 (g=6), A026800(g=7), A026801 (g=8), A026802 (g=9), A026803 (g=10).
Not necessarily connected k-regular simple graphs with girth at least 4: A185314 (any k), A185304 (triangle); specified degree k: this sequence (k=2), A185334 (k=3), A185344 (k=4), A185354 (k=5), A185364 (k=6).
Sequence in context: A126793 A069910 A026797 * A274146 A027189 A140829
KEYWORD
nonn,easy
AUTHOR
T. Forbes (anthony.d.forbes(AT)googlemail.com)
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 19 14:45 EDT 2024. Contains 372698 sequences. (Running on oeis4.)