login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A026796 Number of partitions of n in which the least part is 3. 29
0, 0, 0, 1, 0, 0, 1, 1, 1, 2, 2, 3, 4, 5, 6, 9, 10, 13, 17, 21, 25, 33, 39, 49, 60, 73, 88, 110, 130, 158, 191, 230, 273, 331, 391, 468, 556, 660, 779, 927, 1087, 1284, 1510, 1775, 2075, 2438, 2842, 3323, 3872, 4510, 5237, 6095, 7056, 8182, 9465, 10945, 12625 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,10

COMMENTS

Let b(k) be the number of partitions of k for which twice the number of ones is the number of parts, k = 0, 1, 2, ... . Then a(n+4) = b(n), n = 0, 1, 2, ... (conjectured). - George Beck, Aug 19 2017

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from G. C. Greubel)

Jason Kimberley, Index of sequences counting not necessarily connected k-regular simple graphs with girth exactly g

FORMULA

G.f.: x^3 / Product_{m>=3} (1 - x^m).

a(n) = p(n-3) - p(n-4) - p(n-5) + p(n-6), where p(n) = A000041(n). - Bob Selcoe, Aug 07 2014

a(n) ~ exp(Pi*sqrt(2*n/3)) * Pi^2 / (12*sqrt(3)*n^2). - Vaclav Kotesovec, Jun 02 2018

G.f.: Sum_{k>=1} x^(3*k) / Product_{j=1..k-1} (1 - x^j). - Ilya Gutkovskiy, Nov 25 2020

MAPLE

seq(coeff(series(x^3/mul(1-x^(m+3), m=0..65), x, n+1), x, n), n = 0 .. 60); # G. C. Greubel, Nov 02 2019

MATHEMATICA

Table[Count[IntegerPartitions[n], p_ /; Min@p==3], {n, 0, 60}] (* George Beck Aug 19 2017 *)

CoefficientList[Series[x^3/QPochhammer[x^3, x], {x, 0, 60}], x] (* G. C. Greubel, Nov 02 2019 *)

PROG

(PARI) a(n) = numbpart(n-3) - numbpart(n-4) - numbpart(n-5) + numbpart(n-6); \\ Michel Marcus, Aug 20 2014

(PARI) x='x+O('x^66); Vecrev(Pol(x^3*(1-x)*(1-x^2)/eta(x))) \\ Joerg Arndt, Aug 22 2014

(MAGMA) R<x>:=PowerSeriesRing(Integers(), 60); [0, 0, 0] cat Coefficients(R!( x^3/(&*[1-x^(m+3): m in [0..70]]) )); // G. C. Greubel, Nov 02 2019

(Sage)

def A026796_list(prec):

    P.<x> = PowerSeriesRing(ZZ, prec)

    return P( x^3/product((1-x^(m+3)) for m in (0..65)) ).list()

A026796_list(60) # G. C. Greubel, Nov 02 2019

CROSSREFS

Essentially the same sequence as A008483.

Not necessarily connected 2-regular graphs with girth at least g [partitions into parts >= g]: A026807 (triangle); chosen g: A000041 (g=1 -- multigraphs with loops allowed), A002865 (g=2 -- multigraphs with loops forbidden), A008483 (g=3), A008484 (g=4), A185325(g=5), A185326 (g=6), A185327 (g=7), A185328 (g=8), A185329 (g=9).

Not necessarily connected 2-regular graphs with girth exactly g [partitions with smallest part g]: A026794 (triangle); chosen g: A002865 (g=2 -- multigraphs with at least one pair of parallel edges, but loops forbidden), this sequence (g=3), A026797 (g=4), A026798 (g=5), A026799 (g=6), A026800 (g=7), A026801 (g=8), A026802 (g=9), A026803 (g=10).

Not necessarily connected k-regular simple graphs girth exactly 3: A198313 (any k), A185643 (triangle); fixed k: this sequence (k=2), A185133 (k=3), A185143 (k=4), A185153 (k=5), A185163 (k=6).

Sequence in context: A027195 A008483 A281356 * A008925 A266749 A308283

Adjacent sequences:  A026793 A026794 A026795 * A026797 A026798 A026799

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling

EXTENSIONS

More terms from Michel Marcus, Aug 20 2014

a(0) = 0 prepended by Joerg Arndt, Aug 22 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 26 20:51 EDT 2022. Contains 354092 sequences. (Running on oeis4.)