login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A008483 Number of partitions of n into parts >= 3. 57
1, 0, 0, 1, 1, 1, 2, 2, 3, 4, 5, 6, 9, 10, 13, 17, 21, 25, 33, 39, 49, 60, 73, 88, 110, 130, 158, 191, 230, 273, 331, 391, 468, 556, 660, 779, 927, 1087, 1284, 1510, 1775, 2075, 2438, 2842, 3323, 3872, 4510 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,7

COMMENTS

a(0) = 1 because the empty partition vacuously has each part >= 3. - Jason Kimberley, Jan 11 2011

Number of partitions where the largest part occurs at least three times. - Joerg Arndt, Apr 17 2011

By removing a single part of size 3, an A026796 partition of n becomes an A008483 partition of n - 3.

For n >= 3 the sequence counts the isomorphism classes of authentication codes AC(2,n,n) with perfect secrecy and with largest probability 0.5 that an interceptor could deceive with a substituted message. - E. Keith Lloyd (ekl(AT)soton.ac.uk).

For n >= 1, also the number of regular graphs of degree 2. - Mitch Harris, Jun 22 2005

(1 + 0*x + 0*x^2 + x^3 + x^4 + x^5 + 2*x^6 + ...) = (1 + x + 2*x^2 + 3*x^3 + 5*x^4 + ...) * 1 / (1 + x + 2*x^2 + 2*x^3 + 3*x^4 + 3*x^5 + 4*x^6 + 4*x^7 + ...). - Gary W. Adamson, Jun 30 2009

Because the triangle A051031 is symmetric, a(n) is also the number of (n-3)-regular graphs on n vertices. Since the disconnected (n-3)-regular graph with minimum order is 2K_{n-2}, then for n > 4 there are no disconnected (n-3)-regular graphs on n vertices. Therefore for n > 4, a(n) is also the number of connected (n-3)-regular graphs on n vertices. - Jason Kimberley, Oct 05 2009

Number of partitions of n+2 such that 2*(number of parts) is a part. - Clark Kimberling, Feb 27 2014

For n >= 1, a(n) is the number of (1,1)-separable partitions of n, as defined at A239482.  For example, the (1,1)-separable partitions of 11 are [10,1], [7,1,2,1], [6,1,3,1], [5,1,4,1], 4,1,2,1,2,1], [3,1,3,1,2,1], so that a(11) = 6. - Clark Kimberling, Mar 21 2014

LINKS

Vincenzo Librandi and Andrew van den Hoeven, Table of n, a(n) for n = 0..10000 (first 301 terms from Vincenzo Librandi)

Roland Bacher, P. De La Harpe, Conjugacy growth series of some infinitely generated groups, hal-01285685v2, 2016.

R.-Q. Feng, J. H. Kwak and E. K. Lloyd, Isomorphism classes of authentication codes, Bull. Austral. Math. Soc. 69 (2004), no. 2, 203-215.

Elisabeth Gaar and Daniel Krenn, Metamour-regular Polyamorous Relationships and Graphs, arXiv:2005.14121 [math.CO], 2020.

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 446

F. Jouneau-Sion and O. Torres, In Fisher's net: exact F-tests in semi-parametric models with exchangeable errors, August 2014, preprint on ResearchGate.

Jason Kimberley, Index of sequences counting not necessarily connected k-regular simple graphs with girth at least g

Johan Kok, Degree affinity number of certain 2-regular graphs, Open J. of Disc. Appl. Math. (2020) Vol. 3, No. 3, 77-84.

Eric Weisstein's World of Mathematics, Two-Regular Graph

FORMULA

a(n) = p(n) - p(n - 1) - p(n - 2) + p(n - 3) where p(n) is the number of unrestricted partitions of n into positive parts (A000041).

G.f.: Product_{m>=3} 1/(1-x^m).

G.f.: (Sum_{n>=0}  x^(3*n)) / (Product_{k=1..n} (1 - x^k)). - Joerg Arndt, Apr 17 2011

a(n) = A121081(n+3) - A121659(n+3). - Reinhard Zumkeller, Aug 14 2006

Euler transformation of A179184. a(n) = A179184(n) + A165652(n). - Jason Kimberley, Jan 05 2011

a(n) ~ Pi^2 * exp(Pi*sqrt(2*n/3)) / (12*sqrt(3)*n^2). - Vaclav Kotesovec, Feb 26 2015

G.f.: exp(Sum_{k>=1} x^(3*k)/(k*(1 - x^k))). - Ilya Gutkovskiy, Aug 21 2018

MAPLE

series(1/product((1-x^i), i=3..50), x, 51);

ZL := [ B, {B=Set(Set(Z, card>=3))}, unlabeled ]: seq(combstruct[count](ZL, size=n), n=0..46); # Zerinvary Lajos, Mar 13 2007

with(combstruct):ZL2:=[S, {S=Set(Cycle(Z, card>2))}, unlabeled]:seq(count(ZL2, size=n), n=0..46); # Zerinvary Lajos, Sep 24 2007

with(combstruct):a:=proc(m) [A, {A=Set(Cycle(Z, card>m))}, unlabeled]; end: A008483:=a(2):seq(count(A008483, size=n), n=0..46); # Zerinvary Lajos, Oct 02 2007

MATHEMATICA

f[1, 1] = 1; f[n_, k_] := f[n, k] = If[n < 0, 0, If[k > n, 0, If[k == n, 1, f[n, k + 1] + f[n - k, k]]]]; Table[ f[n, 3], {n, 49}] (* Robert G. Wilson v, Jan 31 2011 *)

Rest[Table[Count[IntegerPartitions[n], p_ /; MemberQ[p, 2*Length[p]]], {n, 50}]]  (* Clark Kimberling, Feb 27 2014 *)

PROG

(MAGMA) p := NumberOfPartitions; A008483 :=  func< n | n eq 0 select 1 else n le 2 select 0 else p(n) - p(n-1) - p(n-2) + p(n-3)>; // Jason Kimberley, Jan 11 2011

(PARI) a(n) = numbpart(n)-numbpart(n-1)-numbpart(n-2)+numbpart(n-3) \\ Charles R Greathouse IV, Jul 19 2011

CROSSREFS

Essentially the same sequence as A026796 and A281356.

From Jason Kimberley, Nov 07 2009 and Jan 05 2011 and Feb 03 2011: (Start)

Not necessarily connected simple regular graphs: A005176 (any degree), A051031 (triangular array), specified degree k: A000012 (k=0), A059841 (k=1), this sequence (k=2), A005638 (k=3), A033301 (k=4), A165626 (k=5), A165627 (k=6), A165628 (k=7).

2-regular simple graphs: A179184 (connected), A165652 (disconnected), this sequence (not necessarily connected).

2-regular not necessarily connected graphs without multiple edges [partitions without 2 as a part]: this sequence (no loops allowed [without 1 as a part]), A027336 (loops allowed [parts may be 1]).

Not necessarily connected 2-regular graphs with girth at least g [partitions into parts >= g]: A026807 (triangle); chosen g: A000041 (g=1 -- multigraphs with loops allowed), A002865 (g=2 -- multigraphs with loops forbidden), this sequence (g=3), A008484 (g=4), A185325(g=5), A185326 (g=6), A185327 (g=7), A185328 (g=8), A185329 (g=9).

Not necessarily connected 2-regular graphs with girth exactly g [partitions with smallest part g]: A026794 (triangle); chosen g: A002865 (g=2), A026796 (g=3), A026797 (g=4), A026798 (g=5), A026799 (g=6), A026800(g=7), A026801 (g=8), A026802 (g=9), A026803 (g=10), ... (End)

Sequence in context: A245439 A132326 A027195 * A281356 A026796 A008925

Adjacent sequences:  A008480 A008481 A008482 * A008484 A008485 A008486

KEYWORD

nonn,easy

AUTHOR

T. Forbes (anthony.d.forbes(AT)googlemail.com)

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 13:08 EST 2021. Contains 349581 sequences. (Running on oeis4.)